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1 Introduction
Data quality focuses on understanding how much data is fit for its intended use. This
problem has been investigated in database research, considering aspects such as consis-
tency, currency, and completeness [6,11,19]. One of the questions that these approaches
do not consider or consider marginally, is where and how data originates and how it
evolves. Even though in general a database may be updated in arbitrary ways, often data
are manipulated according to some business process, implemented in an information
system that accesses the DB. We believe that analyzing how business processes generate
data allows one to gather additional information on their fitness for use.

In this work, we focus on a particular aspect of data quality, that is the problem
whether a business process that reads from and writes into a database can affect the
answer of a query or whether the answer will not change as a result of the process. We
refer to this problem as query stability. The study of this problem has originally been
motivated by the student enrollment at our university. We provide a running example
inspired by this scenario.
Example. In November the student office distributed a report on the numbers of
students enrolled in the offered courses. When comparing the numbers with those of
the previous years, the Master in Computer Science (mscCS) showed a decrease, in
contrast with other courses, like the Master in Economics (mscEco), that registered
a substantial increase. The rector immediately called the head of the department and
asked for an explanation. Apparently, there was no reason for such a decrease. After
a long investigation, a secretary of the department discovered that the reason was a
complication in the registration process, which foresees two routes to registration: a
regular one and a second one via international federated study programs to which some
courses, like the mscCS, are affiliated. Due to different deadlines, regular registration
was concluded in November while registration for students from federated programs
was not. Since the mscCS is affiliated to some federated programs, but the mscEco not,
the query asking for all mscEco students was stable in November, while the query for
all mscCS students was not and returned too low a number.

In situations like the above, it would have been possible to reason on query sta-
bility if not only the data were available, but also information on the processes and
the way it manipulates the data. Having this information would make it possible to
automate reasoning on stability and potentially integrate it into some information system.
Organizations, for instance, often specify their business processes using standardised
languages, such as BPMN, and rely on engines that can run those business processes
(e.g., Bonita, Bizagi). However, in these systems how the data is manipulated by the
process is hidden in the code, making difficult any reasoning on data quality.
Contributions Assessing query stability by leveraging on processes gives rise to
several research questions. (1) What is a good model to represent processes, data and
the interplay among the two? (2) What is the overhead of reasoning on query stability?
(3) What are the characteristics of the model that may complicate the reasoning? (4)
Are there existing mechanisms that can be leveraged to perform the reasoning?
(1) Data-Aware Business Process Model. Current approaches either focus on process
modeling, representing the data in a limited way (like in Petri Nets [15]), or adopt a data
perspective, leaving the representation of the process implicit [3, 5, 9]. We introduce
a formalism called Data-Aware Business Processes (DABPs). In DABPs the process
is represented as a graph. The interactions with an underlying database are expressed
by annotating the graph with information on which data is read from the database and
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which is written into it. DABPs model the possibility to have several process instances
executing the process. New information can be brought into the process by starting a
fresh process instance (Section 2).
(2) Query Stability. In the existing approaches the authors aim at the verification
of general properties (e.g. temporal properties), for which reasoning is typically in-
tractable [3, 8, 9]. In contrast, we identify a particular property, i.e. checking query
stability for conjunctive queries (Section 3), and we identify interesting cases where the
reasoning is tractable.
(3) DABP Variants. To understand the sources of complexity of our reasoning problem,
we identify the following facets of DABPs: (i) a process can (or cannot) read from
relations that it can write; (ii) negation is (is not) allowed in process conditions; (iii)
a process can (cannot) have cycles; (iv) the process can (cannot) start with pending
instances; (v) new instances can (cannot) start at any moment. Combinations of these
facets define different variants of DABPs, for which we investigate the stability problem
(Sections 3–5).
(4) Datalog Encoding. For each DABP variant we provide an encoding into a suitable
variant of Datalog and we map the problem of query stability into the problem of query
answering in Datalog. The encoding generates all the facts that can be produced in
the process executions that are relevant w.r.t. stability. Over them it checks if any new
query answer is produced. We prove that our approach is optimal w.r.t. worst case
complexity in the size of the data, query and in the size of the entire input. Additionally,
we introduce as measures the size of the process and of the running process instances.
Our analysis identifies tractable cases of the stability problem and provides a possible
way for implementation, using engines for SQL or for Datalog.

Related work and conclusion end the paper (Section 6).
A preliminary version of this paper was presented at the AMW workshop [18].

2 Data-aware Business Processes
In this section we introduce our formalism, named Data-aware Business Processes
(DABPs), which allows us to represent business processes and the way they manipulate
data. We rely on this formalism to perform reasoning on query stability.
Notation We adopt standard notation from databases. In particular, we assume an
infinite set of relational symbols and an infinite set of constants dom as the domain of
values, and the positive rationals Q+ as the domain of timestamps. A schema is a finite
set of relation symbols. A database instance is a finite set of ground atoms, facts, over a
schema and the domain domQ+ = dom ∪Q+. We use upper-case letters for variables,
lower-case for constants, and overline for tuples, e.g., c̄.

A DABP is a pair B = 〈P, C〉, consisting of a process part P and a configuration
part C. Intuitively, the process part is fixed. It defines how and under which conditions
actions can change data stored in the configuration part. The configuration is a dynamic
part consisting of (i) a database, and (ii) the process instances that traverse the process.
Process Part: Net The skeleton of the process part is a directed multigraph N = 〈P,
T 〉, the process net, consisting of a set of vertices P , the places, and a set of edges T ,
the transitions. There is one distinguished place in P , the start place start. A process
instance traverses the graph, starting from start. The different transitions emanating
from a place represent alternative developments of a process instance.

We use the distinguished relation symbol In to specify the input data associated
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Figure 1: Student Registration Process Net Preg

with a process instance. The last argument of In is a timestamp, called the start time, to
record the time when the process instance was started (e.g., In(c̄, τ), where c̄ is a tuple
of constants from domQ+ and τ ∈ Q+). We denote with ΣB,In and ΣB the schemas of
B with and without In resp.
Example. Let us consider our student registration process, denoted Breg = 〈Preg, Creg〉.
Figure 1 reports the process net Preg. A process instance starts when a student submits
a request via the on-line system, providing information such as the student name and
the name of the course. Automatically, the system attaches a time stamp to the request.
The application is then represented as an In-record In(S,C, T ), where S,C and T are
variables for the student name, the course name and the timestamp resp.

The registration procedure distinguishes among two kinds of applications: regular
and international. International programs are part of international federated programs
involving different universities. In this case, an international commission decides about
whom to admit. For regular programs, instead, it is the university itself that evaluates
the applications and decides whether a candidate satisfies the necessary requirements to
be admitted.

Accordingly, the process first checks the kind of application. If it is for an inter-
national course (‘is intl. app.’) then it checks if the student has already been admitted
(‘is admitted’). If not, it checks if the course is also open to regular applications (‘isn’t
admitted’). If the application is for a regular course (‘is reg. app.’), then the bottom
branch of the process is followed.

The process is regulated by different deadlines, establishing the valid registration
period. Registrations received early (‘early’) or late (‘intl. late’, ‘reg. late’) are not
evaluated. The process also foresees a pre-enrolment phase. Applications received
in this period can benefit of some flexibility in the evaluation procedure, like (i) the
possibility to complete an application not fully complete w.r.t. the requirements and (ii)
the possibility to confirm or withdraw the registration before being formally enrolled.

Accordingly, an application to an international course received in time (‘intl. in
time’) is then immediately registered (‘register directly’) if not in the pre-enrolment
phase. Otherwise, the student is pre-enrolled (‘pre-enrol stud.’) having the possibility
(‘stud. decis.’) to later confirm (‘register app.’) or withdraw (‘withdraw’) the registration.
In this case, the application fee the student paid will be reimbursed. This kind of
interaction of the system with the external (e.g. human intervention or interaction with
other systems) is modelled as a non-deterministic choice.
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Transition Execution Condition (E)

is intl. app. In(S,C, T ), StudyPlan(C, intl, P )

is admitted In(S,C, T ),AdmittedIntl(S,C)

isn’t admitted In(S,C, T ),¬AdmittedIntl(S,C), StudyPlan(C, reg, P )

early In(S,C, T ),Deadline(start, Tstart), T < Tstart

intl. late In(S,C, T ),Deadline(intl, Tintl), T > Tintl

intl. in time In(S,C, T ),Deadline(start, Tstart),Deadline(intl, Tintl), Tstart ≤ T ≤ Tintl

register directly In(S,C, T ),Deadline(pre, Tpre), T > Tpre

pre-enrol stud. In(S,C, T ),Deadline(pre, Tpre), T ≤ Tpre

register app. In(S,C, T ),Pre-enrolled(S,C)

is reg app. In(S,C, T ), StudyPlan(C, reg, P ),¬StudyPlan(C, intl, P )

reg. in time In(S,C, T ),Deadline(start, Tstart), Deadline(reg, Treg), Tstart ≤ T ≤ Treg

reg. late In(S,C, T ),Deadline(reg, Treg), T > Treg

pre-enrol cond. In(S,C, T ),Deadline(pre, Tpre), T ≤ Tpre

complete app. In(S,C, T ),Conditional(S,C)

withdraw app. = approve app. = reject app. : true

Transition Writing Rule (W)

register directly Registered(S,C)← In(S,C, T )

pre-enrol Pre-enrolled(S,C)← In(S,C, T )

pre-enrol cond. Conditional(S,C)← In(S,C, T )

register app. Registered(S,C)← In(S,C, T )

Table 1: Execution Condition and Writing rules in Preg

A regular application received in time (‘reg. in time’) is then evaluated by the
academic staff (‘acad. check’), the outcome of which can be that the application is:
(i) approved (‘approve app.’); (ii) rejected (‘reject app.’); or (iii) the student can be
conditionally pre-enrolled (‘pre-enrol cond.’), which is only possible during the pre-
enrolment phase. In the latter case, the student can submit the missing document later
(‘complete app.’). 4
Process Part: Labeling Function The whole process part is a pair P = 〈N,L〉,
which in addition to a network N comprises a labeling function L that assigns to
every transition t ∈ T a pair L(t) = (Et,Wt). Here, Et, the execution condition,
is a Boolean query over ΣB,In and Wt, the writing rule, is a rule R(x̄) ← Bt(x̄)
whose head is a relation of ΣB and whose body is a ΣB,In-query that has the same
arity as the head relation. Evaluating Wt over a ΣB,In-instance D results in the set of
facts Wt(D) = {R(c̄) | c̄ ∈ Bt(D)}. Intuitively, Et specifies in which state of the
database which process instance can perform the transition t and Wt specifies which
new information is (or can be) written into the database when performing t. In this
paper we assume that Et and Bt are conjunctive queries possibly with negated atoms
and comparisons involving timestamps.
Example. Table 1 reports the execution conditions and writing rules for the registration
process Preg. Consider, for instance, the transition ‘is intl. app.’ which should be
enabled only for applications to courses associated to international programs. This is
captured by the condition In(S,C, T ), StudyPlan(C, intl, P ), that checks if the course
C of the application (In(S,C, T )), is stored in the relation StudyPlan and associated to
a program P whose type is intl. The transitions ‘isn’t admitted’, ‘is admitted’, ‘register
app.’, ‘is reg. app.’ and ‘complete app.’ have conditions of a similar kind. The other
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transitions are labeled with conditions checking that the application satisfies the foreseen
deadlines, stored in the database. For instance, ‘pre-enrol cond.’ should be enabled
for applications received in the pre-enrolment phase. Thus, the condition reads the
deadline from the database (Deadline(pre, Tpre)) and checks that the application has
been submitted before it (T ≤ Tpre).

The transitions ‘register directly’, ‘pre-enrol’, ‘pre-enrol cond.’ and ‘register
app.’ are also labelled with a writing rule. For instance, when ‘pre-enrol cond.’ is
traversed, then the process records that the student application is accepted conditionally,
by storing it in relation Conditional (Conditional(S,C)← In(S,C, T )). 4
Configuration Part This part models the dynamic part of the process: process in-
stances and the database. Formally, a configuration is a triple 〈I,D, τ〉, where I defines
the process instances; D is a database instance over ΣB; τ is a timestamp, the current
time.

Each instance in I is associated with a single In-record storing the data carried by
the instance. New constants from the infinite domain can be brought into the database
by starting new instances. An In-record is created when the instance starts and cannot
be changed later on. Also, the input record of an instance is only visible for that instance
while the database is shared among all instances.

Formally, instance part is a triple I = 〈O,MIn,MP 〉 where O = {o1, ..., ok} is
a set of process instances (objects); MIn is a mapping that maps each o ∈ O to an
In-record In(c̄, τ) = MIn(o); MP is a mapping that maps each o ∈ O to a current place
MP (o) ∈ P .

For convenience, we also use the notation B = 〈P, I,D, τ〉, B = 〈P, I,D〉 (when τ
is not relevant) and B = 〈P,D〉 (for a process that is initially without running instances).
Example. Table 2(a) show a database instance Dreg for our running example. Courses
offered by the university are stored in the relation StudyPlan, together with information
on their type (intl or reg) and the program they are associated. Relation Deadline
stores the date for the starting of the registration period (start), and the end for the
pre-enrolment (pre), regular (reg) and international (intl) enrolments. The remaining
tables store information about the students. Relation AdmittedIntl stores the students
admitted to an international course. Students that already completed the registration and
that are successfully pre-enrolled or registered are stored in relations Pre-enrolled and
Registered resp, while those that are accepted conditionally are stored in Conditional.

Table 2(b) reports the running process instances Ireg in the form of a relation.
Currently four student applications are in the process. The instance with id o4, for
instance, is associated to John’s request for the “db” program, which has been received
on 4th Nov. The instance is currently at place start. 4

Timestamps stored in the database are foreseen to be a rather static part that is
created manually at the design phase of the process. At this point we assume that
DABPs do not allow process instances to write timestamps into database relations that
are joined with comparisons in the process rules. In Section 4.1 we discuss how this
restriction allows us to simplify processes and how, in principle, they can be simplified
without this restriction.
Execution of a DABP Let B = 〈P, C〉 be a DABP, with current configuration
C = 〈I,D, τ〉. There are two kinds of atomic execution steps of a DABP: (i) the
traversal of a transition in the net by an instance and (ii) the introduction of a new
instance.
(i) Traversal of an instance. Consider an instance o ∈ O with MIn(o) = In(c̄, τ ′) and
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StudyPlan

course type program

compLogic intl mscCS
compLogic reg mscCS
db reg mscCS
econ reg mscEco

Deadline

label date

start 1st Sep
pre 30th Sep
reg 31st Oct
intl 31st Dec

AdmittedIntl

student course

bob compLogic
mary compLogic

Pre-enrolled

student course

bob compLogic
alice econ

Conditional

student course

paul econ

Registered

student course

bob compLogic
alice econ

(a) Database Instance Dreg

Instances and mapping

id In-record place

o4 (john, db, 4th Nov) start
o3 (paul, econ, 24th Sep) end
o2 (alice, econ, 20th Sep) end
o1 (bob, compLogic, 5th Sep) end

(b) Process Instances Ireg

Table 2: Database and Instance Representation of the Student Registration Process.

MP (o) = q. That is, o is at place q and In(c̄, τ ′) is the input data of o. Let t be a
transition from q to p, with execution condition Et. Then t is enabled for o, i.e., it can
traverse it, if Et evaluates to true over the database D ∪ {In(c̄, τ ′)}. Let Wt : R(x̄)←
Bt(x̄) be the writing rule of t. Then the effect of o traversing t is the transition from
C = 〈I,D, τ〉 to a new configuration C′ = 〈I ′,D′, τ〉, such that (i) the set of instances
O and the current time τ is the same; (ii) D′ = D ∪Wt(D ∪ {In(c̄, τ ′)}) is the new
database, and (iii) I = 〈O,MIn,MP 〉 is updated to I ′ = 〈O,MIn,M

′
P 〉 reflecting the

change of place for the instance o, that is M ′P (o) = p and M ′P (o′) = MP (o′) for all
other instances o′.
(ii) Introduction of an arbitrary instance at the start place. Let o′ be a fresh instance
and let In(c̄′, τ ′) be an In-record where the timestamp τ ′ is greater or equal than τ , the
current time of C. Note that the constants in c̄′ need not appear in the database or in
the process. The result of introducing o′ with info c̄′ at time τ ′ is the configuration
C′ = 〈I ′,D, τ ′〉 such that I ′ = 〈O′,M ′In,M ′P 〉 where: (i) the database instance is the
same as in C; (ii) the set of instances O′ = O ∪ {o′} is augmented by o′; and (iii) the
mappings M ′In and M ′P are an extension of MIn and MP resp., obtained by defining
M ′In(o′) = In(c̄′, τ ′); M ′P (o′) = start; M ′In(o) = MIn(o) and M ′P (o) = MP (o) for all
o ∈ O.

An execution Υ in B = 〈P, C〉 is a finite sequence of configurations C1, . . . , Cn (i)
starting with C (= C1), and (ii) where each next configuration Ci+1 is obtained from
Ci by making an atomic execution step. We denote Υ also with C1  · · ·  Cn. We
say that the execution Υ produces facts A1, . . . , An if the last configuration Cn in Υ
contains A1, . . . , An.
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Since at each step fresh instances can start and write new data (i) there are infinitely
many possible executions and (ii) database may grow in an unbounded way over time.

3 The Query Stability Problem
In this section we introduce the main problem of our investigation, that is the problem
of query stability in DABPs.

Definition 1 (Query Stability). For a given DABP B = 〈P, C〉 with database instance
D, a given query Q and timestamp τ , we say that Q is stable in B till the time-point τ ,
if for any execution Υ = C  · · · C′ in B where C′ has database D′ and timestamp
τ ′ such that τ ′ < τ , it holds:

Q(D) = Q(D′).

In the above definition, we allow τ to be∞, the supremum of the domain Q+. If
a query is stable till time point∞, we say it is globally stable, or simply stable. The
decision problem that we investigate is: given a DABP B, a query Q, and a timestamp
τ , can we decide if Q is stable in B till time-point τ? Given a set of intervals we would
like to analyze the stability of a query for each interval. We imagine that having such
analysis can be useful for decision makers to have a better understanding of how reliable,
in particular how stable, the data is in each interval.
Example. Consider again the student registration example and the queries

Qcs(S)← Registered(S,C), StudyPlan(C,mscCS, P ), and
Qeco(S)← Registered(S,C), StudyPlan(C,mscEco, P )

that ask for the students registered at the master in CS, and the master in Economics,
respectively. We analyze the stability of the two queries in different periods, for each
of them assuming that the current time of the DABP is within the period. Table 3
shows the results. If the current time is before the 1st Sept., both programs do not

Interval < Sept Sept - Oct Nov - Dec > Dec

Qeco stable instable stable stable
Qcs stable instable instable stable

Table 3: Stability of the queries for different intervals.

allow registrations and thus they are stable in this interval, even though they are instable
globally since both programs allow for arbitrary new registrations in the next interval
(Sept.-Oct.). If the current time is within the interval (Nov.-Dec.) the query Qeco is
stable because the program mscEco is not affiliated to any international (intl) course
and the deadline for the regular programs has passed. On the contrary, mscCS has an
affiliated course to which student Mary is admitted. However, she is not registered
yet and potentially she could submit an application that, if before the 31st Dec., would
be accepted. Thus Qcs is not stable in this interval. If the admitted students were all
registered beforehand, then the query would be stable since no new registration would
be possible. The query would be stable also in the case the process is closed for new
instances to start (e.g., because the limit on registered students has been reached). In
this case, only running instances are allowed to finish their execution. Thus, candidate
Mary would not be able to register even though she is admitted. If the current time is
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after the 31st Dec., both queries are stable regardless if the process is open or closed
because all the registration deadlines have expired. 4

3.1 Facets of DABPs
To investigate the sources of complexity and provide suitable encodings into Datalog,
we introduce several facets of DABPs.
General vs. Rowo This facet indicates whether the model allows a process instance
to read the facts that itself or another instance has written into the database. In the
general variant this is allowed, while it is not in the restricted variant, called rowo
(Read-Only Write-Only). Formally, rowo DABPs split the schema Σ into two disjoint
schemas: the reading schema Σr and the writing schema Σw, such that the execution
conditions and the queries in the writing rules range over Σr while the heads range over
Σw.

The DABP in our example is general, since the relations Pre-enrolled and Condi-
tional are both read and written by the process.
Normal vs. Positive In principle, we allow queries in execution conditions and
writing rules to include safe negation. We identify these processes as normal, to
distinguish them from positive processes where negation is not allowed.

Our example is normal, though only with negation on database relations that are not
updated by the process.
Cyclic vs. Acyclic In business process management, repetitive actions are often
modeled using cycles. For cyclic DABPs, it is possible that cycles occur in the process
net, as in our running example, while cycles are not allowed in acyclic DABPs.
Arbitrary vs. Fresh A DABP is fresh if its initial configuration does not contain any
running instance. If it may contain running instances, we say it is arbitrary.

In our scenario, we can imagine that at the beginning of the registration period the
process starts with a fresh configuration (i.e. no running applications). Starting from an
arbitrary configuration may be needed to handle exceptions in the registration process.
For instance, a regular application received after the deadline for a valid reason, may be
placed by a secretary at a certain place in the process that it would not be able to reach
starting form the start place.
Open vs. Closed Semantics A process under open semantics allows new instances to
start at any moment, while under closed semantics only transition traversals are possible
(no new instances can be started). In the closed variant, stability of a query depends
only on the unfinished instances, while in open processes, it depends also on the new
instances that may start. As a consequence, under closed semantics the only interesting
case is the arbitrary one, since a query is trivially stable under fresh configuration.

Our example runs under open semantics. One can imagine that after the last deadline
(31st Dec.) the web form for submitting new applications will be no more available.
Then the process will run under closed semantics.

Checking Stability in DABP Variants We note that the problem of stability till a
time-point τ can be reduced to the problem of checking whether the query is globally
stable. To achieve this, one can adapt a given DABP by adding a new start place and
connecting it to the old start place via a transition that is enabled only for instances
with timestamp smaller than τ . In this way, any query Q would be globally stable in the
resulting DABP iff it is stable in the original DABP till time-point τ .

10



The decision problem of query stability considers as an input a process model P , a
configuration C, a query Q and a semantics s under which the DABP 〈P, C〉 executes.
The question is:

Is Q globally stable in 〈P, C〉 under semantics s?

For convenience, hereafter we will omit the semantics when it is clear from the context,
or we abbreviate it into open (closed) DABPs.
Singleton DABPs A singleton DABP is a closed DABP with a single instance at the
start place in the initial configuration.

3.2 Summary of Complexity Results
Table 4 summarizes the DABP variants and the corresponding complexities.
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4 Stability in General Data-aware Business Process Model

4.1 Abstraction Principles
Under open semantics fresh instances can bring an arbitrary number of new constants
into the database with their input. Thus, processes can produce arbitrarily many new
facts.

Here we introduce two abstraction principles. The first one explains how to faithfully
abstract an unbounded number of timestamps into a finite number of representative
ones, and based on that how to rewrite timestamp comparisons in the conditions into
equivalent ones, however on database relations. The second principle explains how to
faithfully abstract infinitely many executions into finitely many. The second principle
holds only for positive and rowo DABPs.
Abstraction Principle for Timestamps. Let B = 〈P, I,D, τB〉 be a DABP. Based
on B we construct a DABP B′ = 〈P ′, I ′,D′〉 that produces the same facts as B
but abstracts away timestamps. In particular, B′ (i) replaces all comparisons on the
timestamps with conditions on database relations, and (ii) adapts DABP executions so
that fresh instances do not update the current time of configuration. In this way, we
obtain a DABP that is easier to analyze.

Let τ1, . . . , τn be the timestamps from D including τB such that τi < τi+1. We
introduce new timestamps τ ′0, . . . , τ

′
n such that

τ ′0 < τ1 < τ ′1 < · · · < τn < τ ′n.

To make the information about comparisons < and ≤ available in the database D′, we
introduce binary relationsR< andR≤, resp. Then we populate those relations with pairs
of timestamps among τ ′0, τ1, . . . , τ

′
n such that for every two such timestamps τ < τ̃ the

fact R<(τ, τ̃) is added to D′ (and similarly for ≤). The rest of D′ is the same as D.
Then, we adapt the process part P such that each < and ≤ is replaced with R< and
R≤ resp. To ensure that only instances with timestamps from D′ that are greater or
equal than τB execute the process, we add a condition checking this on each outgoing
transition from start.

Then, we introduce the discretization function δD′ : domQ+ → domQ+ that based
on the timestamps from D′ “discretizes” Q+ as follows: (i) for τ ∈ domQ+ we define
δD′(τ) = τ if τ = τi for some i; (ii) δD′(τ) = τ ′i if τi < τ < τi+1 for some i;
(iii) δD′(τ) = τ ′0 if τ < τ1; (iv) δD′(τ) = τ ′n if τn < τ ; (v) for a ∈ dom we define
δD′(a) = a. We extend δD′ to all syntactic objects containing constants, including
executions. We set I ′ = δD′I.

Proposition 1 (Abstraction of Timestamps). Let Υ = C  C1  · · ·  Cm be an
execution in B that produces a set of facts W , and let Υ′ = δD′Υ = δD′C  δD′C1  
· · · δD′Cm. Further, let Υ′′ be an execution in B′ that produces a set of facts W ′. It
holds:

a) Υ′ is an execution in B′ that produces W ;

b) There exists an execution Υ′′′ in B that produces W ′.

In other words, original and abstracted DABPs produce the same facts, and thus
have the same impact on stability.

The claim a) is a consequence of disallowing timestamps to be written. Intuitively,
it holds because any two timestamps τ and τ ′ (introduced by fresh instances) that
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are between two consecutive timestamps from D, say τi < τ, τ ′ < τi+1, cannot be
distinguished by the process rules. Hence, it is enough to consider only one fresh
timestamp for each interval (τi, τi+1).

The executions in B must introduce instances with increasing timestamps, while
B′ need not. Then, the execution Υ′′′ in claim b) can be obtained from Υ′′ by first
executing the introduction steps in the timestamps order, and then executing the traversal
steps.

The above property gives a direct procedure of how to rewrite comparisons from
rules as database relations. In principle, the above abstraction procedure can be extended
for the case when writing of timestamps is allowed. However, the abstraction procedure
would be much more complex as one would need at least exponentially many new
timestamps to faithfully simulate all cases.

From now on, we focus on DABPs without comparisons, and we assume that
timestamps are part of the domain dom . The obtained results propagate to variants with
comparisons.
Abstraction Principle for Fresh Constants. Let B = 〈P, I,D〉
be a positive DABP that executes under open semantics. Let Q be a query that we want
to check for stability. Based on B and Q we define the active domain adom as the set
of all constants that appear in them. We observe that a positive execution condition
evaluates to true for some fresh instance already if the input record of the instance takes
constants from the active domain. Still, to produce a new query answer, the constants
from the active domain may not be enough (in principle, a query may return all possible
tuples formed with constants from the active domain). We show that it is enough to
consider at most one new constant, in addition to the active domain. We can reason
similarly about rowo DABPs.

Let b be a new constant such that b 6∈ adom, and let adom∗ = adom ∪ {b} be
the extended active domain. Based on the extended active domain, we define the ab-
straction function αb

adom : dom → dom such that αb
adom(c) = c iff c ∈ adom; otherwise

αb
adom(c) = b. In other words, the abstraction function maps all constants from the active

domain to themselves, and all the rest to b. The abstraction function is straightforwardly
extended to all instances that contain constants. Now we are ready to introduce the
abstraction principle that holds for all positive and rowo DABPs.

Proposition 2 (Abstraction of Fresh Constants). Let Υ = C  C1  · · · Cm be an
execution in B that produces a set facts W . Let Υ′ = αb

adomΥ = αb
adomC  αb

adomC1  
· · · αb

adomCm, then:

a) Υ′ is an execution in B that produces αb
adomW ;

b) Q(D) 6= Q(D ∪W ) iff Q(D) 6= Q(D ∪ αb
adomW ).

In other words, each execution in B can be αb
adom-abstracted and it will still be an

execution, and more importantly, such execution produces a new query answer if and
only if the αb

adom-abstracted version produces a new query answer.
Based on the abstraction principle for fresh constants we show how to use Datalog

reasoning to check query stability.
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4.2 Positive (A)cyclic Fresh Open
In this section we describe how to construct a Datalog program from a given positive,
possibly cyclic, fresh DABP under open semantics and a query that checks stability of
the query.

Assume we are given a positive fresh DABP B = 〈P,D〉 and queryQ. The encoding
program consists of two parts.

i) First part is a program Πpo,fr
P,Q that starting from the initial database computes the

maximal extended database that the process B can produce over the extended
active domain. In order to distinguish between facts produced by the process and
the facts from the initial database, we introduce a new signature Σ′B which is the
same as ΣB except that each relation R ∈ ΣB is renamed into primed version R′

of the same arity. Program Πpo,fr
P,Q uses primed signature.

ii) Then, we construct a program Πtest
Q that checks if the query Q has a new answer

over the maximal extended database.

Encoding into Datalog
To record which fresh instances can reach a place p in P , we introduce relation Inp of
size In. That is, Inp(s̄) evaluates to true in the program iff an instance with the same
In(s̄) record can reach p.

Introduction Rule. Initially, all relevant fresh instances (those taking constants from
adom∗) reach start place. To encode this we introduce the following introduction rule:

Instart(X1, . . . , Xn)← adom∗(X1), . . . , adom∗(Xn).

Here, with slight abuse of notation, adom∗ represents a unary relation that we initially
instantiate with the constants from adom∗.

Copy Rules. Also initially we copy all database facts into the primed signature of P ,
that is for each relation R ∈ ΣP we introduce the copy rule:

R′(X)← R(X).

Traversal Rule. Now we want to encode instance traversals. For every transition t
that goes from a place q to p we introduce a traversal rule that copies all instances that
reached q into those that reached p provided that the instances satisfy the execution
condition for t.

Let Et : R1(s̄1), . . . , Rm(s̄m), In(s̄) be the execution condition for t, then we use
E′t(s̄) as a short hand for the primed version of Et defined as E′t(s̄) : R′1(s̄1), . . . ,
R′m(s̄m), In(s̄). The traversal rule for t is:

Inp(X)← Inq(X), E′t(X)

Here, we use the primed version E′t(X) since new transitions may become traversable
as new facts are produced.

Generation Rule. To capture which facts are produced by traversing t, we introduce a
generation rule defined as follows.
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Let Wt : R(ū)← Bt(s̄) be the writing rule for t, with Bt(s̄) denoting R1(s̄1), . . . ,
Rm(s̄m), In(s̄). Then,

R′(ū)← Inq(X), E′t(X), B′t(X)

Here, similarly to E′t, B
′
t(X) denotes the primed version of Bt(X).

Summary. Then, we have that the maximal extended database of B exactly corresponds
to the set of facts that evaluates to true in Πpo,fr

P,Q ∪ D.

Lemma 1. Let R′(ū) be a fact defined over adom∗, then the following is equivalent:

• there is an execution in B that produces R(ū)

• Πpo,fr
P,Q ∪ D |= R′(ū)

Testing Program

Now we define Πtest
Q that checks if Πpo,fr

P,Q ∪ D produces a new query answer for Q.

Copy Rules. For every relation R ∈ ΣQ we introduce the primed version R′ and,
similarly as before, the copy rule

R′(X)← R(X)

in order to copy facts that are not copied by Πpo,fr
P,Q.

Q′-rule. Given a query Q(x̄) ← R1(ū1), . . . , Rn(ūn), we introduce a Q′-rule as the
primed version of Q, as follows

Q′(x̄)← R′1(ū1), . . . , R′m(ūm)

Test Rule. Then, if there is a new query answer, the test rule fires fact Instable:

Instable← Q′(X),¬Q(X)

Summary. Let Πtest
Q be the program that contains Q, Q′, the copy and test rules.

Theorem 1. The following two are equivalent:

• Q is instable in B under open semantics;

• Πpo,fr
P,Q ∪ D ∪Πtest

Q |= Instable.

Complexity results
4.2.1 EXPTIME- and PTIME-hardness in Process and Data Complexity

Program Πpo,fr
P,Q ∪ D ∪ Πtest

Q is a Datalog program with stratified negation for which
the reasoning is as complex as for positive Datalog, that is EXPTIME for process and
combined complexities and PTIME for data complexity.

Theorem 1 shows that the recursive power of Datalog (and some limited negation)
is sufficient to reason on stability for positive fresh DABPs. In the following we show
that the use of Datalog is an optimal approach as stability is as hard as Datalog query
answering. In fact, we show that it is already “Datalog”-hard for (a) positive acyclic
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(a) Pop
⇧,A (b) Pcl

⇧,At1
...

trm endstart

tA

t1
...

trm endstart

tA

Figure 2: Datalog query answering encoded into positive DABPs under (a) open
semantics and (b) closed semantics.

fresh DABPs under open semantics, and (b) positive cyclic singleton DABPs under
closed semantics.

Let Π ∪ D be a Datalog program, and let A be a fact. We define a positive acyclic
fresh DABP 〈Pop

Π,A,D〉 that produces the LFP of Π ∪D. As depicted in Figure 2(a), for
every rule r in Π we introduce a transition tr that connects start with end and we set
true as execution condition and r as writing rule. Additionally, we add transition tA
with the writing rule dummy← A. As initial database we take D. Let Qtest ← dummy
be the test query.

Lemma 2. Π ∪ D 6|= A iff Qtest is stable in 〈Pop
Π,A,D〉.

Lemma 2 can be adapted for positive cyclic arbitrary DABPs under closed semantics
by extending Pop

Π,A with a transition from end to start that creates a cycle (see Fig-
ure 2(b)). We denote this process with Pcl

Π,A. Now, let CD be a singleton configuration
with D as initial database.

Corollary 1. Π ∪ D 6|= A iff Qtest is stable in 〈Pcl
Π,A, CD〉.

The above two claims give lower-bounds for process (EXPTIME) and data complex-
ity (PTIME). At this point, we can conclude that there are two sources of complexity
in positive DABPs that elevate them to the complexity of Datalog: open semantics
and presence of cycles. In Section 4.4 we show that dropping both of them lowers the
combined complexity for stability checking.

4.2.2 ΠP
2 -hardness in Query Complexity

We remind the reader that checking whether a Boolean CQ evaluates to true over a fixed
database is already NP-hard in the size of the query. In this paragraph we show that
checking query instability can be done in NP time using an NP oracle, which leads to
ΠP

2 complexity for checking query stability.
An example of a ΠP

2 problem is the graph 3-coloring extension that is the following
problem: Can any 3-coloring of the leaves of a graph be extended to a 3-coloring of all
of the graph?

Lemma 3 (Query Complexity). The following holds:

a) There exist two databases D, D′ where D ⊆ D′ s.t. for a CQ Q checking if
Q(D) = Q(D′) is ΠP

2-hard in the query size;

b) For any two databases D, D′ s.t. D ⊆ D′ checking for a CQ Q if Q(D) = Q(D′)
is in ΠP

2 in the query size.
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Proof. a) Assume we are given a graph G = 〈V,E〉 with vertices V = {v1, ..., vn} and
where w.l.o.g. leaves are v1, ..., vm, for m ≤ n. Based on G we construct a query

QG(X1, ..., Xm)←
∧

(vi,vj)∈E
Eg(Xi, Xj).

We set D to be the six correct colorings {Eg(red, blue),Eg(red, green), . . . }, and we
set D′ to be all nine possible colorings {Eg(red, red),Eg(red, blue), . . . }. We observe
the following. (i) Each tuple returned by QG when evaluated over D corresponds one
coloring of the leaves variables where the rest of the variables are also colored according
to D. (ii) QG returns at least one tuple over D iff G is 3-colorable. This is because
variables from QG can take only one color when evaluated over D, and in addition
any two adjacent vertices must have different colors. (iii) Then from the two above
points we have that the tuples from D(QG) represent all colorings of the leaves for
which there are correct 3-coloring of the rest of G. Thus, if the tuples from D(QG)
are all possible colorings of the leaves then G is 3-coloring extendable. (iv) Moreover,
QG evaluated over D′ returns all possible colorings of the leaves. This is because one
can assign any colors to the leaves variables from QG, where the rest of variables take
any color, and this is still a satisfying assignment over D′ . Altogether, we have that
QG(D) = QG(D′) iff G is 3-colorable extendable.

b) To show that checking Q(D) = Q(D′) is in ΠP
2 it is sufficient to show that

Q(D) 6= Q(D′) is in ΣP
2 . To show this, one can guess in NP time an answer ā ∈ Q(D′)

and then check using an NP oracle that ā 6∈ Q(D).

Following Lemma 3 a), we can define a DABP under open semantics and a DABP
under closed semantics that starting from D produces D′. In fact, for both DABPs it is
enough to consider the simplest variant of rowo.

Proposition 3. Checking stability is ΠP
2-hard in query complexity for positive open

DABPs. It is ΠP
2-hard already for

a) positive acyclic fresh rowo DABPs under open semantics, and

b) positive acyclic arbitrary rowo DABPs under closed semantics.

Proof. a) Following the proof of Lemma 3 we construct a rowo DABP B0 = 〈P0,D0〉
such that D0 = {Eg(red, blue),Eg(red, green), . . . } contains six correct colorings,
and P0 is a process depicted on Figure 3 where edges tred, tblue and tgreen insert the re-

tred tblue tgreen
start

Figure 3: Process net of rowo P0

maining three colorings for edges: Eg(red, red), Eg(blue, blue) and Eg(green, green)
resp. The maximal extended database that B can produce is D′0 that contains all nine
possible colorings. Then for a given graph G = 〈V,E〉 we construct the test query
QG(X1, ..., Xm)← ∧

(vi,vj)∈E Eg(Xi, Xj) as defined in Lemma 3 for which it holds:
QG is stable in B under open semantics iff G is 3-colorable extendable. The claim
follows from there.

b) For closed semantics it is enough to take singleton DABP B′0 = 〈P0, I0,D0〉
where P0 and D0 are the same as in a). The claim follows from there as in a).
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Query Complexity Upper-Bound. From Theorem 1 we have that to check stability
it is sufficient to compare the answers of Q over D and Q′ over the maximal extended
database entailed by Πpo,fr

P,Q ∪ D. According to Lemma 3 b) this can be done in ΠP
2 time

in the size of Q.

Complexity Summary

Corollary 2 (Complexity Summary). For positive acyclic and cyclic fresh DABPs under
open semantics checking query stability is

1. EXPTIME-complete in process and in combined complexity;

2. ΠP
2-complete in query complexity;

3. PTIME-complete in data complexity for fresh configurations.
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4.3 Normal (A)cyclic Fresh/Arbitrary Open
In this part we investigate stability for DABPs that execute under open semantics and
that allow negation in the rules. Negation in the rules may impose that fresh instances
need to introduce more than one new constant in order to execute the process. In fact, we
show that it is not possible to compute the number of new constants that a process needs
to introduce, as we show that normal acyclic DABPs under open semantics can simulate
Turing machines (TMs). From this we have that checking stability is undecidable, and it
is already undecidable in data and query complexity.

4.3.1 Undecidability in Data, Instance and Process Complexity

To show undecidability in data complexity we construct a DABP such that the process
part simulates the executions of a given TM which is stored in the database. To simulate
the TM executions, the process part has to deal with two features of TMs: (i) potentially
unbounded number of updates on the TM configurations (= number of execution steps in
the TM), and (ii) potentially infinite tape of the TM. The encoding process is organized
in three subprocesses: the first two deal with (i) and (ii) and the third one simulates
the execution of the TM. In the following we provide an intuition for these three
subprocesses

DABPs cannot update facts in the database, however, we are able to simulate an
update of a fact by augmenting each fact with a constant that represents a version of
this fact. Then, an update of a fact is simulated with an inseration of the augmented fact
where a new version is specified. Since we have arbitrary number of constants on the
input we can do arbitrary number of updates. Using rules with negation, we can ensure
that (i) a new version differs from all previous versions, and (ii) the process orders
versions in a linear order by inserting a new version as successor of the last version (that
is the only version without successor).

To encode a potentially infinite tape, the process again uses new constants from
the input to index tape positions. To order tape indexes, the process uses a mechanism
similar to the one used for ordering the versions.

The third subprocess uses versions and tape indexes produced by the other two to
simulate the TM executions. Since it is acyclic, the subprocess needs a fresh instance
for each execution step of the TM. It produces halt predicate iff the TM reaches a final
state.

Let P0 be the process that comprises the three subprocesses described above and
let Qhalt ← halt be a test query. Let T be an arbitrary TM, s be an input for T , and let
DT,s be a database that encodes T and s. Then the following holds.

Lemma 4 (Reduction of Turing Machines I).

T halts on input s iff Qhalt is instable in 〈P0, DT,s〉
under open semantics.

Proof. See Subsection below.

This gives us undecidability for data complexity. It also gives us undecidability for
process complexity, since for a TM T and an input s we can augment P0 so that it first
inserts all facts of DT,s into the database that is initially empty. Similarly, we obtain
undecidability for instance complexity by introducing an arbitrary instance for each fact
in DT,s that inserts that fact at the beginning.
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4.3.2 Undecidability in Query Complexity

To show undecidability in query complexity the idea is to encode the given input s into
a test query Qhalt,s as a set of facts, that is Qhalt,s ← halt, Ds where Ds encodes s. The
difficulty now, w.r.t the previous cases, is that Ds from the query cannot be written into
the database. To deal with this aspect we define a process part P ′0 that extends P0 with
a subprocess that can generate any input for a TM, that is for each input s′ there is an
execution where this subprocess generates Ds′ . This subprocess executes first. Let T be
a TM, we define a DABP 〈P ′0, DT 〉 where DT is the same as DT,s from Lemma 4 but
without the encoding for the input s.

Then we have that Qhalt,s is instable in 〈P ′0, DT 〉 iff (i) the process first generates the
encoding Ds of the input s and then (ii) the process produces halt predicate, i.e., the TM
T halts for s. Since the process can generate any input, there exists an execution that
generates the input that is encoded in the query; thus we have that the query is instable
iff (ii) holds.

Corollary 3 (Reduction of Turing Machines II).

T halts on input s iff Qhalt,s is instable in 〈P ′0, DT 〉
under open semantics.

Proof. See Subsection below.

If as TM we take the Universal TM (UTM), we have that the query is instable
iff UTM halts for the encoded input. Checking the latter for an arbitrary input is
undecidable.

Theorem 2 (Undecidable Cases). Checking stability is undecidable for normal DABPs
under open semantics. Undecidability already holds for normal acyclic fresh DABPs
under open semantics and

1. data complexity;

2. instance complexity;

3. process complexity;

4. query complexity.

Proof of Lemma 4

To prove Lemma 4 we want to define a process such that executions of the process
correspond to runs of a TM for any TM. We encode the TM into the data, so that in this
way we can

• show undecidability of data complexity; and

• show undecidability also for acyclic processes (where cycles are encoded intro-
ducing as many new process instances as needed).

Encoding Principles. We now provide the intuition for the encoding.
In a Turing machine the content of a cell can be updated by an execution step.

Since DABPs cannot update relations we have to simulate updates. To this end we use
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constants, called versions v1, v2, . . . , to store different versions of the TM configuration
(i.e. to encode the steps of a run of a TM).

Additionally, we need to index cells on a tape which can be arbitrarily long. Positions
on the tape are encoded by indexing each position of the tape using indexes i1, i2, . . .
(see Figure 4). Since we do not know the length of a run of a TM, neither how much
space on the tape it uses, the process needs to generate a sufficient number of indexes
and versions.

Generated versions and indexes need to be ordered. As we will show, this this is
possible using the negation in the rules.

v1

v2

. . .

. . .

i2

i2i1

i1 i3 i4

i3 i4

1

1

10

00

Figure 4: Use of versions and indexes in the encoding of TM into DABP

In the following we describe how to construct a DABP for a given TM and a given
input. The encoding is divided into three subprocesses (see Figure 5) connected to the
start, such that:

1. Execution Simulation. Simulates the execution of the Turing Machine (TM)

2. Version Generation. Generates constants that are used for the versioning of TM
configurations

3. Index Generation. Generates constants that are used for indexing the cells of
the tape

For convenience, we will use notation tTM
1 , tTM

2 , . . . , for the transitions in the subpro-
cess for the Execution Simulation Similarly, we will use tvs

1 , t
vs
2 , . . . and tidx

1 , tidx
2 , . . .

for the transitions in the subprocesses for Version Generation and Index Generation
resp.

Execute TM

Generate Constants
for Versions

Generate Constants
for Cell Indexes

tTM
1

tvs
1

tidx
1

Figure 5: Encoding of a Turing Machine into DABPs

22



Encoding of Subprocess for the Execution of the TM

Before describing the subprocess that simulates the execution of a TM, we report the
definition of a TM.
Turing Machine. A Turing Machine is defined as a 7-tuple

M = 〈Q,F, q0,Σ,t,Γ, δ〉

where:

• Q = {q0, q1, . . . , qn} – set of states;

• F = {f1, . . . , fm} ⊆ Q – set of accepting (final) states s.t. m ≤ n;

• q0 ∈ Q – starting state;

• Σ = {0, 1} – input symbols;

• t – blank symbol that occurs infinitely often on the tape;

• Γ = Σ ∪ {t} – tape symbols;

• δ : (Q\F )× Γ→ Q× Γ× {left, right} – transition function.
Given a state and a read symbol the machine transits into a new state, writes a
symbol and moves left or right on the tape. E.g. δ(q, 1)→ (q′, 0, left).

Vocabulary. Later on we will use the following:

• v1, v2, v3, . . . as symbols to enumerate TM configurations;

• i1, i2, i3, . . . to index the cells of the tape. We consider a tape unbounded in one
direction only;

• halt as unary predicate that is true iff TM halts, that is if it reaches a final state.

Version and Index Relations. To encode versions we introduce relation Version to
store symbols that are used for versions. We also introduce relation NextVersion to store
the immediate successor of a version in the order, and VersionUsed to store the versions
symbols that have already been used in the subprocess. The encoding is such that it
always hold: VersionUsed ⊆ Version. More precisely:

• Version(v) is true iff constant v is a version;

• NextVersion(v1, v2) represents that the next version after version v1 is version v2;

• VersionUsed(v) holds iff version v has been used in the subprocess;

Similarly to versions, we introduce relation Index to store the symbols used to index
positions on the tape. We use NextIndex to store the order among the index symbols.
That is,

• Index(i) is true iff constant i is an index;

• NextIndex(i1, i2) holds iff index i2 points to the cell that is on the right of the
cell pointed to by index i1. For convenience, in the following we will say “cell i”
instead of “pointed to by index i”.
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TM relations. To encode a TM we will use relation δ′ of arity 5, to encode the transition
function δ of the TM. We use relation Final as a unary relation containing the final
states of the TM.

• δ′(q1, s1; q2, s2, d): for each argument (q1, s1) and the corresponding result (q2,
s2, d) in δ we have a record δ′(q1, s1; q2, s2, d) in the database;

• Final(q) iff q is a final state.

Relations for TM execution. Finally, to encode the execution of the TM we use relation
Cell to store the content of a cell in a version. Then, we introduce relation Head to store
the cell to which the TM points in a certain version, and State to store the state in which
the TM is in a certain version. We also introduce an auxiliary unary relation LockTM to
ensure that at most one process instance at a time executes the subprocess.

• Cell(v, i, s) holds iff in version v the content of cell i is symbol s;

• Head(v, i) iff in version v the head of the TM is over cell i;

• State(v, q) is true iff in version v the TM is in state q;

• LockTM(v) stores that the current version v is being executed by a process
instance. Thus, other process instances cannot execute.

Initialization. We now describe how relations are initialized.
Assume we are given an input s = s1, . . . , sk. We introduce indexes i0, i1, . . . , ik

for indexing the cells, where i0 is an auxiliary symbol that we use for technical reason
to properly generate new indexes in the subprocess that generates indexs (that we will
discuss later). Index i1 is the index of the first cell.

We populate the relations Index and NextIndex as follows:

Index
i0
i1
...
ik

NextIndex
i0 i1
i1 i2
...

...
ik−1 ik

As initial version we take v1. We initialize the relation Cell for the given input as
follows:

Cell
v1 i1 s1

...
...

...
v1 ik sk

In the case we have an empty input, Index and Cell relations are initialized as
follows:

Index
i0
i1

Cell
v1 i1 t
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Figure 6: Subprocess that simulates the execution of the TM

Then, we initialize the relations Head and State for the execution of the TM.
Specifically, we have that at version v1 the head points to the first cell. This is encoded
with Head(v1, i1). The starting state q0 is encoded with State(v1, q0).

For technical reasons, we introduce version v0, which is an auxiliary version used to
correctly initialize the versioning of the tape. We initialize the versioning relations as
follows:

Version
v0

v1

VersionUsed
v0

NextVersion
v0 v1

LockTM
v0

Process Part. In the following we define the subprocess that simulates the execution of
a TM. The subprocess is depicted in Figure 6.

Intuitively, each of the transitions tTM
2 , . . . , tTM

10 of the subprocess in Figure 6 updates
one relation that encodes the execution of the TM. Since in DABP it is not possible
to write more than one relation at a time, we need to make sure that only one process
instance at a time can traverse transitions tTM

2 , . . . , tTM
10 . If we would allow more than one

instance to execute the subprocess, we may have interleaving executions of instances in
the process that do not correspond to any execution of the TM. Therefore, we define
transition tTM

1 in such a way that, once traversed by an instance, it will be disabled for
other instances to enter the subprocess until the running instance reaches the end of the
subprocess. This ensures that only after all updates for the current step of the TM are
made, the next step of TM can be executed.

Note that, if we could write into several relations in one transition, then two tran-
sitions would be enough: one for storing the new configuration of the tape and one to
check whether a final state has been reached (currently done with transition t9).

For convenience we define CurrentVersion(V ) as abbreviation for the following
condition:

CurrentVersion(V ) : NextVersion(V1, V )

VersionUsed(V1),¬VersionUsed(V ).

Intuitively, the current version is a version that has not been used yet and that is the
successor of a version that has been used. The subprocess generating version symbols
makes sure that there is always exactly one constant that is the current version.

We now describe execution conditions and writing rules for the transitions. We omit
execution conditions when they are true.

We use transition tTM
1 to ensure that the subprocess is executed by one instance at a

time. To achieve this we enforce that the transition can be traversed only if the current
version is not locked:

EtTM
1

: CurrentVersion(V ),¬LockTM(V ).
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Initially, tTM
1 is not locked for version v1.

Immediately after an instance traverses tTM
1 , this transition becomes disabled for

other instances to traverse. This is achieved by locking the current version with the
writing rule:

WtTM
1

: LockTM(V )← CurrentVersion(V ).

The transition tTM
1 is unlocked again (for a new current version) once a new current

version is introduced by traversing transition tTM
10 (as we show later).

By means of transition tTM
2 we model the update of the Cell pointed by the Head by

inserting a symbol for the cell in the next version. Conditions for an instance to progress
traversing tTM

2 are that:

i) there is a next version for the current version, i.e. the subprocess 2 has generated
enough version constants to proceed (If this is not the case, the execution of
this subprocess is blocked until new constants are generated by the subprocess
generating new versions.);

ii) given the current state of the TM and the read input, according to the transition
function δ′ there is a next state.

These conditions are encoded in the following rule:

EtTM
2

: CurrentVersion(V ),NextVersion(V, V1),

Head(V, I), State(V,Q),

Cell(V, I, S), δ′(Q,S; , , ).

While traversing, it is necessary to update the symbol in the cell pointed by the head.
This is done by inserting in the cell pointed by the head, the symbol according to
transition function δ′. This is done for the new version the symbol. The following rule
does this:

WtTM
2

: Cell(V1, I, S2)←CurrentVersion(V ),NextVersion(V, V1),

Head(V, I), State(V,Q),

Cell(V, I, S1), δ′(Q,S1; , S2, ).

Transition tTM
3 updates the version of the cells that are not pointed by the Head, by

copying in the next version the content of the cells not pointed by the head:

WtTM
3

: Cell(V1, I1, S)←CurrentVersion(V ),NextVersion(V, V1),

Head(V, I),Cell(V, I1, S), I1 6= I.

Transitions tTM
4 , tTM

5 , tTM
6 and tTM

7 update the TM head by updating the index of
the cell it is pointing at. These transitions distinguishes the cases in which the head is
moving left (tTM

4 ) or right. If the head moves to the right, we also distinguish the cases
in which a cell on the right exists in relation Cell (tTM

5 ) or not. The latter case happens if
the new cell was never visited before, and thus we have no Cell-record with the index
on the right. In this case we write t symbol to instantiate newly visited cells (tTM

6 , tTM
7 ).

• Transition tTM
4 updates the Head in case the move is to the left. Condition for

moving left is that the head does not currently point to the first position (i1), which
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represents the left-hand border of the tape. If this is the case the subprocess will
be blocked. This is because we assume the tape to be infinite only on the right:

EtTM
4

: CurrentVersion(V ),Head(V, I),

NextIndex(I1, I), I1 6= i0,

State(V,Q),Cell(V, I, S), δ′(Q,S; , , left).

By traversing tTM
4 , the head is updated storing the index of the cell it is pointing at

in the new version:

WtTM
4

: Head(V1, I1)←CurrentVersion(V ),NextVersion(V, V1)

Head(V, I),NextIndex(I1, I).

• Transition tTM
5 updates the Head in case the move is to the right. Similarly to

transition tTM
4 , the transition is executable if there exists an index for the next

cell the head should point at, i.e. the index has been generated by the subprocess
generating the tape indexes. If this is not the case subprocess will be blocked until
new constants are generated. Additionally, tTM

5 can be traversed if there exists a
Cell-record for the cell on the right:

EtTM
5

: CurrentVersion(V ),Head(V, I),

NextIndex(I, I1),Cell(V, I1, )State(V,Q),Cell(V, I, S),

δ′(Q,S; , , right).

If tTM
5 is traversed, the head is updated for the next version:

WtTM
5

: Head(V1, I1)←CurrentVersion(V ),Head(V, I),

NextIndex(I, I1),NextVersion(V, V1).

• Transition tTM
6 is executable when the TM moves right and there is no Cell-record

for the index on the right:

EtTM
6

: CurrentVersion(V ),Head(V, I),

NextIndex(I, I1), State(V,Q),Cell(V, I, S),

¬Cell(V, I1, S1),Γ(S1), δ′(Q,S; , , right).

As explained, we write t symbol to instantiate newly visited cells:

WtTM
6

: Cell(V1, I1,t)←CurrentVersion(V ),Head(V, I),

NextIndex(I, I1),NextVersion(V, V1).

• Once the t symbol has been stored for the new cell, transition tTM
7 updates the

head. At this point it is not necessary to check if the other subprocesses have
generated the next values for the version and the index resp. This condition
is guaranteed by previous transitions (tTM

2 for version and tTM
6 for the index).

Similarly to transition tTM
5 , tTM

7 updates the head as follows:

WtTM
7

: Head(V1, I1)←CurrentVersion(V ),Head(V, I),

NextIndex(I, I1),NextVersion(V, V1).
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Transition tTM
8 updates the State of the machine according to δ′:

WtTM
8

: State(V1, Q1)←CurrentVersion(V ),Head(V, I),

NextVersion(V, V1), State(V,Q),

Cell(V, I, S), δ′(Q,S;Q1, , ).

Transition tTM
9 checks whether the machine is in a final state. In this case it produces

halt:

WtTM
9

: halt←CurrentVersion(V ),NextVersion(V, V1), State(V1, Q), F inal(Q).

Finally, transition tTM
10 updates CurrentVersion if TM did not reach a final state:

EtTM
10

: ¬halt.

Updating the current version will make transition tTM
1 again executable for a new process

instance:

WtTM
10

: VersionUsed(V )← CurrentVersion(V ).

Encoding of Subprocess for the Generation of New Versions

In this suprocess we encode the generation of version symbols. In particular, we want to
populate relation Version described before, to store symbols used to enumerate different
versions. We also want to define a linear order among them and store it in relation
NextVersion, such that it holds:

NextVersion(v0, v1),NextVersion(v1, v2),NextVersion(v2, v3), . . .

Relations. In addition to the relations already defined, we introduce relation PredVersion
to store that a certain version is the predecessor of another version. This will allow us
to identify the last version in the order, as the one that is not predecessor of any other
version. We also introduce relation LockVersion that is used similarly to LockTM to
ensure that one instance at a time executes the subprocess. More preciesely:

• PredVersion(v) holds iff version v is the predecessor of some version, i.e. there
exist v′ s.t. NextVersion(v, v′). PredVersion is the projection of NextVersion on
the first component. This is needed to encode negation with “not exists”, since
our rules allow only safe negation.

• LockVersion(v) iff the subprocess is locked for version v.

Initialization. To correctly initialize the process we use v0 as an auxiliary version and
we initialize relations Version, VersionUsed and NextVersion as shown in the initializa-
tion of the previous subprocess.

Additionally, we initialize relations LockVersion and PredVersion as follows:

LockVersion
v0

PredVersion
v0

28



tvs
1 tvs

2 tvs
3 tvs

4

Figure 7: Subprocess that generates of new version indexes

Process Part. To generate the symbols for the versions and order them we define the
process depicted in Figure 7.

As for the subprocess described previously, to correctly generate the versions and
the ordering among them we need to make sure that at most one process instance at a
time executes the subprocess. We enforce this as in the previous case.

For convenience we define LastVersion(V ) as follows:

LastVersion(V ) : NextVersion(V1, V )

PredVersion(V1),¬PredVersion(V ).

This condition selects a version V that is the successor of another version V1 and
for which it does not exist a next version.

We now describe in detail each transition of the subprocess.
Transition tvs

1 collects new version candidates. Input relation In is needed to bring
new constants, therefore, In is unary. New constants are used for counting versions:

Etvs
1

: In(V ),¬Version(V );

Wtvs
1

: Version(V )← In(V ).

Transition tvs
2 ensures that one instance at a time is executing the subprocess 2.

Similarly to subprocess 1, this is achieved by expressing the condition that an instance
can traverse if the last version is not locked:

Etvs
2

: LastVersion(V ),¬LockVersion(V ).

By traversing, the instance locks the last version, preventing other instances to execute
the subprocess. This ensures that only one new version is created:

Wtvs
2

: LockVersion(V )← LastVersion(V ).

Transition tvs
3 updates the NextVersion, by inserting the value that comes with the

instance In as next version of the current last version:

Wtvs
3

: NextVersion(V1, V2)← In(V2),LastVersion(V1);

Transition tvs
4 updates the PredVersion relation. The consequence of this is that the

LastVersion is now updated, to the new version inserted by the instance. This enables
transition tvs

2 for a new instance to traverse.

Wtvs
3

: PredVersion(V )← LastVersion(V ).

Encoding of Subprocess for the Generation of New Indexes

The generation of new tape indexes is done similarly to version generation.

Relations. As before, we introduce relation Index to store the symbols used to enumerate
cells of the tape. We define a linear order among these indexes and we define the relation
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PredIndex to store indexes that are the predecessor of another indexes. This relation is
used to identify the last index in the order as the one that is not the predecessor of any
index.

• PredIndex(i) is true iff index i is the predecessor of some index, i.e. it exists an
index i1 s.t. NextIndex(i, i1) holds. In other words, PredIndex is the projection
of NextIndex on the first component, used to encode the negation as “not exists”.

• LockIndex(i) holds iff the subprocess is locked for index i.

Initialization. For the correct generation of indexes, we introduce indexes i0, i1 and
we introduce NextIndex(i0, i1).

Additionally, for a given input s = s1, . . . , sk we introduce indexes i1, . . . , ik and
we populate relations Index, NextIndex, PredIndex and LockIndex as follows:

Index
i0
i1
...
ik

NextIndex
i0 i1
i1 i2
...

...
ik−1 ik

PredIndex
i0
...

ik−1

LockIndex
i0
...

ik−1

Note that if the input is empty the initialization will be:

Index
i0
i1

NextIndex
i0 i1

PredIndex
i0

LockIndex
i0

Process Part. Figure 8 report the subprocess for the generation of the indexes, which is
similar to the subprocess for the generation of the versions.

tidx
1 tidx

2 tidx
3

tidx
4

Figure 8: Subprocess that generates new indexes

Similarly to versions generation we define LastIndex as follows:

LastIndex(I) : NextIndex(I1, I),

PredIndex(I1),

¬PredIndex(I).

Transition tidx
1 collects new index candidates:

Etidx
1

: In(I),¬Index(I);

Wtidx
1

: Index(I)← In(I).

Similarly to subprocess for version generation, In is a unary relation that is used to bring
new constants used for counting tape positions.
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Transition tidx
2 is traversable by an instance if LastIndex is not locked. By traversing,

the last index becomes locked and this ensures that one instance at a time is executing
the subprocess:

Etidx
2

: LastIndex(I),¬LockIndex(I);

Wtidx
2

: LockIndex(I)← LastIndex(I).

Transition tidx
3 inserts a new tuple in relation NextIndex such that the value that

comes with the input In is the immediate successor of the last index:

Wtidx
3

: NextIndex(I1, I2)← In(I2),LastIndex(I1).

Finally, transition tidx
4 adds to relation PredIndex the last index. This will make

transition tidx
2 again executable by a new instance:

Wtidx
4

: PredIndex(I)← LastIndex(I).

Proof of Corollary 3

Now we want to show undecidability in query complexity. To do this we encode a
given input s into a test query Qhalt,s as a set of facts, that is Qhalt,s ← halt, Ds where
Ds encodes s. Since Ds cannot be written into the database, we extend the process
described in the previous section with an additional suprocess, as reported in Figure 9,
which can generate any input for a TM. Then, we enforce this subprocess to execute
first.

Encoding of subprocess for Input Generation. For a given input s = s1, . . . , sn we
create the following query:

Q← halt,Cell(v1, i1, s1), . . . ,Cell(v1, in, sn),Cell(v1, in+1,t),

which is not stable iff the guessed values for the initial configuration of the TM corre-
spond to the input s and then if the TM halts for this input.

Then, we define the process that guesses the input. Intuitively, starting from the
first position on the tape, the process non-deterministically decides whether to guess
a symbol from the input alphabet and store it in the cell, or whether to guess the end
of the input and store the corresponding symbol t in the cess. In the former case, the
process continues by making another guess for the next position on the tape. In the latter
case, the execution of the current subprocess ends, and the execution of the subprocess
simulating the execution of the TM will be enabled.

To achieve this, we will use unary predicate runTM to denote that the end of the
initial configuration has been guessed. Then, to allow other the subprocess for TM
execution to execute only when this predicate holds we modify the execution condition
of tTM

1 as follows:

EtTM
1

: runTM,CurrentVersion(V ),¬LockTM(V ).

Relations. To guess the input we will use relation Sigma′ to store the input alphabet.
Then, we use relation Guessed to store the indexes for which a symbol has been guessed,
and LockGuess to store that the execution of the process is currently locked for the
guessing of a symbol at a certain position. More precisely,
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Figure 9: Encoding of TM extended with the guessing of the initial configuration.

• Σ′(s) is true iff s is a symbol of the input alphabet, i.e 0 or 1.

• Guessed(i) holds iff the symbol pointed by index i has already been guessed.

• LockGuess(i) is an auxiliary unary relation that we use to ensure that at most one
instance at a time executes the subprocess.

• runTM is a nullary predicate that is true iff the subprocess has finished with
guessing.

Initialization. For a correct execution of the subprocess we initialize relations Guessed
and LockGuess as follows:

Guessed
i0

LockGuess
i0

Process Part. The process net is reported in Figure 10. To determine the first index for
which no guess has been made yet, we define CurrentGuess as follows:

CurrentGuess(I) : NextIndex(I1, I),

Guessed(I1),

¬Guessed(I).

Similarly to previous cases, we use tgs
1 to prevent new instances to execute the

subprocess when an instance is executing it. Note that, in case it does not exist an index

tgs
1

tgs
t tgs

end

tgs
“100

tgs
“000

tgs
next

Figure 10: Subprocess that guesses the initial configuration
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that satisfies condition CurrentGuess the process is blocked until the subprocess for
index generation generates new indexes:

Etgs
1

: CurrentGuess(I),¬LockGuess(I);

Wtgs
1

: LockGuess(I)← CurrentGuess(I).

Transitions tgs
“1” and tgs

“0” are used to respectively guess symbol 1 or 0 for the
CurrentGuess index. One among the two transitions is executed non-deterministically.
While traversing, the relation Cell will be updated for the current guess, storing for the
initial version v1 the value 1 if traversing tgs

“1” and the value 0 if traversing tgs
“0”:

Wtgs
“1”

: Cell(v1, I, 1)← CurrentGuess(I);

Wtgs
“0”

: Cell(v1, I, 0)← CurrentGuess(I).

Transition tgs
next updates relation Guessed with the index that has been guessed. As a

consequence, transition tgs
1 will be enabled for a new instance to traverse and make a

guess for the next index:

Wnext : Guessed(I)← CurrentGuess(I).

Transition tgs
t is traversed when the end of the input is guessed. While traversing, the

relation Cell is updated storing that the cell corresponding to the current guess contains
symbol t in the initial version v1:

Wtgs
t : Cell(v1, I,t)← CurrentGuess(I).

Transition tgs
end is executed after transition tgs

t and therefore after the end of the initial
configuration is guessed. The traversal by an instance produces the unary predicate
runTM. This will enable the subprocess for the exeuction of the TM to execute:

Wtgs
end

: runTM← true.

Note that, since CurrentGuess is not updated when the end of the input is guessed, no
new instances will be able to execute transition tgs

1 .

Universal Turing Machine. If we encode a Universal Turing Machine (UTM) in our
process then we have that

Q← halt,Cell(v1, i1, s1), . . . ,Cell(v1, in, sn),Cell(v1, in+1,t)

is not stable iff

i) there is an execution where the process first guesses the input

Cell(v1, i1, s1), . . . ,Cell(v1, in, sn),Cell(v1, in+1,t),

and it is obvious that such an execution exists;

ii) and then the UTM halts for this input, which is undecidable.
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4.4 Normal Acyclic Arbitrary Closed
In this section we consider DABPs under closed semantics where initially process
instances are scattered over process net. This also includes the cases when an instance
is initially at a place that is not reachable from the start.

For this variant of DABPs we observe the following.

i) The number of new facts that a process can produce is finite. In fact, there are
exponentially many different maximal extended databases that can be produced,
due to the fact that arbitrary instances may need to choose between several
alternative paths that they traverse (and the facts they produce). This is a difference
w.r.t. DABPs in Section 4.2, where a fresh DABP can produce infinitely many
new facts, but according to the abstraction principle to check query stability it is
enough to consider one maximal extended database.

ii) The maximal length of an execution is finite since an instance cannot traverse
a transition more than once. Consider a DABP B = 〈P, I,D〉 with o1, . . . , ok
instances and t1, . . . , tm transitions in P then the maximal length of an execution
is mk.

iii) Since the length of each execution is bounded, we can use relations to store
possible paths and what hold after their execution. Let Υ be a closed execution of
size i ≤ mk where at the first execution step an instance ol1 traverses a transition
th1

, then ol2 traverses th2
and so on. Then an execution Υ of size i can be encoded

as a sequence ol1 , th1 , . . . , oli , thi and stored as a tuple:

〈ol1 , th1
, . . . , oli , thi

〉.

Below, we define a Datalog program that produces the facts that hold after an
execution of size i and store them in relations Ri’s.

Encoding into Non-Recursive Datalog
For each relation R in P and Q we introduce relations Ri (for i up to mk) to store all
R-facts produced by an execution of size i. Let Υ be the closed execution from above
and let 〈ol1 , th1 , . . . , oli , thi〉 be the tuple representing it. Then, a relation Ri has the
form

Ri(ol1 , th1
, . . . , oli , thi

; s̄)

and it holds iff Υ produces fact R(s̄). Later on we use ω̄ to represent the tuple 〈ol1 , th1 ,
. . . 〉 for an execution Υ. Ri-facts are then represented as Ri(ω̄; s̄). For convenience,
we use semicolon (;) instead of comma (,) to separate the encodings of the arguments of
different types.

Further, we want to record positions of instances after the execution of Υ. For this
we introduce relation Statei such that Statei(ω̄; p1, . . . , pk) is true iff after Υ is executed
the instances o1, . . . , ok are resp. at places p1, . . . , pk.

Additionally, we introduce auxiliary relation In0 that associates instances with their
In-records, that is In0(o; s̄) is true iff the instance o has input record In(s̄). With slight
abuse of notation, we use ω̄ to denote also the corresponding closed execution Υ.

We now define a program Πac,cl
P,I that computes Ri’s and Statei’s for all possible

executions.
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Initialization Rules. We need initialization rules (i) to store the facts holding at the be-
ginning of the execution and (ii) to store the initial position of the instances. Accordingly,
we introduce the following rules.

• For each relation R ∈ ΣP we introduce a rule to store what holds at step 0:

R0(Y )← R(Y ).

• To represent that in the initial configuration o1 is at place p1, o2 at p2, and so on,
we introduce the following fact rule:

State0(p1, . . . , pk)← true

Traversal Rules. We now want to record how an instance position changes after it
traverses a transition. An instance oj at step i+ 1 can traverse a transition t from place q
to p if oj is at place q at step i and it satisfies the execution condition Et. The following
traversal rule captures this:

Statei+1(W, oj , t;P1, . . . , Pj−1, p, Pj+1, . . . , Pk)←
Statei(W ;P1, . . . , Pj−1, q, Pj+1, . . . , Pk), Ei

t(W ; oj)

Here, Ei
t(W ; oj) is a shorthand for the condition obtained from Et by replacing In(s̄)

with In0(oj ; s̄) and by replacing each atomR(s̄) withRi(W ; s̄). The tupleW is defined
as 2i many distinct variables to match every possible execution of size i. It ensures that
only facts produced by W are considered.

Formally, let Et denote the condition In(s̄), R1(s̄1), . . . , Rn(s̄n),¬Rn+1(s̄n+1),
. . . ,¬Rm(s̄m), then with Ei

t(W ; o) we denote the condition In0(o; s̄), Ri
1(W ; s̄1), . . . ,

Ri
n(W ; s̄n),¬Ri

n+1(W ; s̄n+1), . . . ,¬Ri
m(W ; s̄m)

Copy Rules. A fact in Ri+1 may hold because (i) it was produced at some prior step in
the execution or (ii) it is produced by traversing transition t at step i+ 1. Facts produced
at previous steps are propagated with the copy rule:

Ri+1(W,O, T ;Y )← Statei+1(W,O, T ; ), Ri(W ;Y )

copying facts R(Y ) holding at step i to step i+ 1.

Generation Rules. Facts that are produced by traversing a transition t with the writing
rule Wt : R(ū)← Bt(s̄) are generated with the generation rule:

Ri+1(W,O, t; ū)← Statei+1(W,O, t; ), Bi
t(W ;O)

where condition Bi
t(W ;O) is obtained in the same way as Ei

t(W ;O). In particular, let
Bt(s̄) denote the condition In(s̄), R1(s̄1), . . . , Rn(s̄n),¬Rn+1(s̄n+1), . . . ,¬Rm(s̄m),
then, with Bi

t(W ;O) we denote the condition In0(O; s̄), Ri
1(W ; s̄1), . . . , Ri

n(W ; s̄n),
¬Ri

n+1(W ; s̄n+1), . . . ,¬Ri
m(W ; s̄m).

Summary. The above rules define the program Πac,cl
P,I for acyclic closed DABPs that is

polynomial in the size of P and I. We have that, the program Πac,cl
P,I ∪ D generates all

facts produced by an execution.

Lemma 5. Let ω̄ be an execution in B of size i, and let R1(s̄1), . . . , Rn(s̄n) be a set of
facts. The following is equivalent:

• Facts R1(s̄1), . . . , Rn(s̄n) are produced by ω̄;

• Πac,cl
P,I ∪ D |= Ri

1(ω̄; s̄1), . . . , Ri
n(ω̄; s̄n).
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Testing Program

Now we want to test stability of a query Q(X)← R1(ū1), . . . , Rn(ūn).

Initialization and Copy Rules. Similarly to relations from ΣP , for each relation
R ∈ ΣQ we introduce the initialization rules of the following kind:

R0(Y )← R(Y )

For each relation R ∈ ΣQ we also introduce a copy rule as for relations in ΣP .

Q′-rule. Then, as for open variants, we collect all potential Q-answers in query Q′. A
new query answer may be produced by an execution of any size i up to mk. Thus for
each execution of a size i up to mk we introduce the Q′-rule:

Q′(X)← Ri
1(W ; ū1), . . . , Ri

n(W ; ūn)

As a difference from the previous case, Q′ is now defined on an execution W .

Test Rule. Finally, we introduce the test rule as before.

Instable← Q′(X),¬Q(X).

Summary. Let Πtest
P,I,Q be the program that contains the above rules depending on the

executions of the process P by the running instances I and on the query Q. Then, the
following Theorem holds.

Theorem 3. The following is equivalent:

• Q is instable in B under closed semantics;

• Πac,cl
P,I ∪ D ∪Πtest

P,I,Q |= Instable.

Complexity Results
From Theorem 4 we obtain combined complexity and upper-bound complexities for
process, data and instances. Note that, Πac,cl

P,I ∪ D ∪Πtest
P,I,Q is a non-recursive Datalog

program with negation. Non-recursive Datalog is enough since in closed acyclic DABPs
the maximal length of an execution is bounded by the number of running instances and
transitions in the process. Checking query answering for such programs is as complex
as for non-recursive positive ones which is in PSPACE (which is better than query
answering for recursive Datalog).

4.4.1 PSPACE-hardness in Process Complexity

To show PSPACE-hardness, we encode query answering for non-recursive Datalog
program into stability checking. Let Π = {r1, . . . , rn} be a non-recursive Datalog
program and let A be a fact. Since Π is non-recursive we can order the rules in Π in
such a way that applying them in that order produces the LFP of Π. Wlog, let an order
be ri1 , ri2 , . . . , rin where i1, . . . , in is a permutation of 1, . . . , n. Then, we define an
acyclic positive DABP PΠ,A as depicted in Figure 11, defined as follows. For each
rule rij we introduce a transition tij having rij as the writing rule. Additionally, we
introduce transition tA with writing rule WtA : dummy ← A. We initialize singleton
configuration C0 with an empty database, and we take Qtest as the test query.
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Figure 11: Datalog query answering using acyclic closed DABPs

Lemma 6. Π 6|= A iff Qtest is stable in 〈PΠ,A, C0〉.

From Theorem 4, we have that data complexity is the same as data complexity for
non-recursive Datalog programs, that is in AC0.

Notice that in acyclic closed DABPs having negation in the rules does not increase
the complexities w.r.t. the positive variant. This is because the execution length is
bounded. If we allow cycles, this does not hold, and we later see that stability becomes
more complex in the variants with negation than in the positive variants.
Instance Complexity For the instance complexity we show that the complexity is
significantly higher than data complexity, that is CO-NP-hard already for positive acyclic
closed DABPs.

Lemma 7. There exists a positive acyclic P0, and a database D0 s.t. for every graph
G one can construct an instance part IG s.t.

G is not 3-colorable iff Qtest is stable in 〈P0, IG,D0〉.

Proof. See Subsection 4.4.2

Clearly, from Lemma 7 we also have that checking stability for normal arbitrary
DABPs is CO-NP-hard in instance complexity. It is not hard to see that CO-NP is also
the upper-bound: one can first guess a sequence ω̄, which is polynomial in the size of the
instances, and then check in polynomial time if ω̄ is indeed an execution in the process
and if such ω̄ yields any new query answer. The check can be done in polynomial time
since process, data and query are assumed to be fixed.
Query Complexity When measuring query complexity, the DABP is fixed, thus the
number of maximal extended databases that can be produced is constant. Then to check
stability of a query Q it is sufficient to compare finitely many times the answers of Q
over the maximal extended databases and the initial one. From Lemma 3 (b) we have
that each such check is in ΠP

2 .

Complexity Summary

Corollary 4 (Complexity Summary). For normal and positive acyclic arbitrary DABPs
for under closed semantics checking stability is

1. PSPACE-complete in process and combined complexity;

2. ΠP
2-complete in query complexity;

3. CO-NP-complete in instance complexity;

4. in AC0 in data complexity.
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Figure 12: DABP Process Net encoding three colorability of a graph

4.4.2 CO-NP-hardness in Instance Complexity

In this part we prove Lemma 7 defined above.
In particular, we want to encode the problem of 3-colorability for a graph G into

positive acyclic arbitrary DABPs BG = 〈P0, IG,D0〉 under closed semantics and a
query Qtest such that the query is not stable in BG iff G is 3-colorable.

Let the graph G = 〈V,E〉 be with the vertices V = {v1, . . . , vn} and the edges
E = {e1, . . . , em}.

We define a process P0 composed of three parts.

i) The first part stores an order among the edges, that we later use to check that all
vertexes are correctly colored.

ii) The second part guesses a coloring for each vertex.

iii) The last part checks that the guessed coloring is correct.

First we establish a linear order < on E such that:

e1 < e2 < · · · < em.

Later we use the linear order to check whether the edges are correctly colored by
checking each edge individually following the order. To store the order in database
relations we introduce relations Next, First and Last to store resp. the successors in the
order, the first and the last element of the order. In addition, we introduce relations
Color and Colored to record the color assigned to each vertex and to store edges that
are properly colored. Finally, we use relation OkColor to store the correct colorings for
two adjacent vertexes.

The relations are populated by the process such that: (i) Next(v′i, v
′′
i , v
′
i+1, v

′′
i+1)

is true iff edge (v′i+1, v
′′
i+1) is immediate successor of edge (v′i, v

′′
i ) in the order; (ii)

First(v′1, v
′′
1 ) is true if the edge (v′1, v

′′
1 ) is the first in the order; (iii) Last(v′m, v

′′
m) is true

if the edge (v′m, v
′′
m) is the last in the order; (iv) Color(v, c) is true if vertex v is colored

with color c; (v) Colored(vi, vj) is true if the edge (vi, vj) is properly colored.
We define initial database D0 to contain the six correct colorings for two adjacent

vertexes, that is {OkColor(red, blue),OkColor(red, green), . . . }.
In the following we define the process part P0. The process net of the process

depicted in Figure 12. We assume input relation In of arity four. In the following we
define the process rules.
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pfirst

plast

pnext

tfirst

tlast

tnext

Figure 13: Subrocess to store the ordering among the edges

Writing the linear ordering. The subprocess reported in Figure 13 populates rela-
tions First, Last and Next according to an order among the edges. From now on, where
not otherwise defined, we assume the transitions have execution conditions set to true.

Writing rules for transitions tfirst, tlast, and tnext are defined as follows:

Wtfirst : First(X,Y )← In(X,Y, , );

Wtlast : Last(X,Y )← In(X,Y, , );

Wtnext : Next(X1, Y1, X, Y )← In(X1, Y1, X, Y ).

For each fact that encodes the order, we introduce one process instance that by
traversing a transition writes this fact. Later we use the linear order to check whether
the edges are correctly colored by checking each edge individually following the order.

tblue

tred

tgreen
pguess

Figure 14: Subprocess to guess a coloring.

Guessing of a color. The subprocess reported in Figure 14 is used to guess a coloring
for the vertexes. For each vertex we introduce one process instance that by non-
deterministic choice of a transition among tred, tblue and tgreen writes the color of that
vertex into database.

Writing rules for these transitions is defined as follows:

Wtred : Color(X, red)← In(X, , , );

Wtblue : Color(X, blue)← In(X, , , );

Wtgreen : Color(X, green)← In(X, , , ).

Checking of a color. Finally, the last subprocess in Figure 15 checks that the guessed
coloring is indeed correct.

For each we introduce a process instance that writes a fact if the coloring is correct.
At the last stage we check if the facts are written for all edges.
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first tch
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pcheck

Figure 15: Subrocess to check the coloring

Transition tch
first checks the coloring for the first edge in the graph. In particular, if

the first edge in the order is correctly colored, it will produce fact Colored(v1, v
′
1). This

is captured by the following writing rule:

Wtfirst : Colored(X,Y )← In(X,Y, , ),First(X,Y ),

Color(X,CX),Color(Y,CY ),

OkColor(CX , CY ).

Similarly, transition tch
next will check the coloring for the edges in the ordering: for an

edge In(v′j , v
′′
j , b, b) (where b is a constant used for techincal reasons, since relation In

must be of size 4) it will produce fact Colored(v′j , v
′′
j ) iff v′j and v′′j are correctly colored

and if the previous edge is also correctly colored. This is captured by the following
writing rule:

Wt6 : Colored(X,Y )←In(X,Y, , ),

Color(X,CX),Color(Y,CY ),OkColor(CX , CY ),

Next(X1, Y1, X, Y ),Colored(X1, Y1).

Finally, transition tlast will produce fact dummy iff the last edge is correctly colored
and all previous edges are also correctly colored:

Wtlast : colorable←In(X,Y, , ),Last(X,Y )

Color(X,CX),Color(Y,CY ),OkColor(CX , CY ),

Next(X1, Y1, X, Y ),Colored(X1, Y1).

Instance Part. We then introduce (m+ n+m) instances IG in the following way.

• In the subprocess in Figure 13 we introduce m instances, one for each edge in the
following way:

– for the first edge e1 = (v′1, v
′′
1 ) in the order we introduce an instance oe1

with In-record In(v′1, v
′′
1 , b, b) at place pfirst;

– similarly, for the last edge em+1 = (v′m, v
′′
m) in the order we introduce

instance oem+1 with In-record In(v′m, v
′′
m, b, b) at place plast;

– for any two immediate successor ei < ei+1 in the order we introduce
instance oei+1 with In-record In(v′i, v

′′
i , v
′
i+1, v

′′
i+1) at place pnext.

Here, fresh constants b is needed for technical reasons since we use the input
relation of size four.

• In the subprocess in Figure 14 we introduce n instances, that is, one instance ovi
with In-record In(vi, b, b, b) for each vertex vi at place pguess.

• In the subprocess in Figure 15 we introduce m instances, that is, for each edge
ej = (v′j , v

′′
j ) in the graph we introduce an instance oej with In-record In(v′j , v

′′
j ,

b, b) and place it at pcheck.
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Conclusion. As the test query we use Qtest ← dummy.
Then it is not hard to check that the query is stable iff G is not colorable. Process

and database parts are fixed and the size of instance part is linear w.r.t. the size of the
instance part. This concludes the proof.
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4.5 Positive Acyclic Arbitrary Open
In this variant we have to combine what can be produced by the running instances
(from the initial configuration), and what can be produced by fresh instances that can be
introduced at the start place.

Assume we are given a DABP B = 〈P, I,D〉 that executes under open semantics
with instances o1, . . . , ok in the initial configuration. We make the following observa-
tions:

i) Similar to the closed variant in Section 4.4, at each execution the running instances
can make at most mk steps, where m is the number of transitions in P . Thus, as
shown there, executions of running instances can be encoded as a tuple.

ii) Considering fresh instances, in principle, there is no bound on the length of an
execution, since arbitrary many fresh instances can start at any moment. Still, to
analyze stability, as in the fresh open case in Section 4.2, it is enough to consider
the maximal execution that produces the largest set of facts possible taking the
constants from the extended active domain.

iii) The idea is to combine the maximal executions for fresh instances with bounded
executions for running instances. In particular, we extend the maximal execution
for fresh instances by making mk maximal executions, each after one execution
step of a running instance. In this way we obtain the largest set of facts possible
taking the constants from the extended active domain. According to the abstraction
principles this one is enough to check stability.

Following the above observations, we define maximal executions that are constructed
by alternating the following two steps:

1. first, fresh instances that take constants from the extended active domain traverse
the process in all possible ways producing the maximum that they can produce;

2. then, one running instance makes a single transition, and then we again execute
the first step.

In the execution above, one can record the steps by the fresh instances in the same
way as for the fresh variant, except that we augment it with the executions of running
instances.

In fact, execution steps of running instances uniquely characterizes such maximal
executions, since they are the only choices that maximal executions can have (whereas
steps by fresh instances are deterministic as they traverse in all possible ways).

Then we again use a tuple of size mk

〈ol1 , th1
, ol2 , th2

, . . . 〉

to record such maximal executions where the recorded steps are the traversals of running
instances.

Similarly, to record that a fact R(s̄) is produced by such maximal execution ω̄ =
〈ol1 , th1

, ol2 , th2
, . . . 〉 we use

Ri(ω̄; s̄).
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Encoding into Datalog
To encode what is produced by the maximal executions we adopt the encoding relations
as for the closed variant (Section 4.4).

We adapt the relations from the fresh variant (Section 4.2), as follows:

• Inp,i for i = 1, . . . ,mk of arity arity(In) + 2i such that Inp,i(ω̄; s̄) is true iff a
fresh instance with In-record can reach place p provided that running instances
traverse according to ω̄ = 〈ol1 , th1

, . . . , oli , thi
〉.

• Ri of arity 2i+ arity(R) such that Ri(ω̄, s̄) is true iff a maximal execution where
running instances traverse according to ω̄ produces R(s̄).

To define a Datalog program, we take all the rules from the closed variant and we
adapt the rules from the fresh variant as follows.

Traversal Rule. For every execution step i up to mk and for every transition t from a
place q to a place p, we introduce a traversal rule that copies all fresh instances that
were able to reach q and that satisfy the execution condition Et:

Inp,i(W ;X)← Inq,i(W ;X), Ei
t(W ;X)

where Ei
t(W ;X) denotes the condition obtained from Et as in the closed variant.

Generation Rule. We adapt the generation rule to store the facts that are produced
by a fresh instance in relations Ri’s. For each transition t with writing rule Wt :
R(ū)← Bt(s̄) we introduce the following generation rule for each i up to mk:

Ri(W ; ū)← Inq,i(W ;X), Ei
t(W ;X), Bi

t(W ;X).

Here Bi
t(W ;X) denotes the condition obtained from Bt as in the closed variant.

Summary. The above rules define the program Πpo,ac
P,I,Q.

Lemma 8. Let ω̄ be a maximal execution in B of size i, and let R1(s̄1), . . . , Rn(s̄n) be
a set of facts. The following is equivalent:

• Facts R1(s̄1), . . . , Rn(s̄n) are produced by ω̄;

• Πpo,ac
P,I,Q ∪ D |= Ri

1(ω̄; s̄1), . . . , Ri
n(ω̄; s̄n).

Testing Program

As testing program we adopt the same program from the closed variant.

Summary. Let Πtest
P,I,Q be the testing program. Then, the following Theorem holds.

Theorem 4. The following is equivalent:

• Q is instable in B under closed semantics;

• Πpo,ac
P,I,Q ∪ D ∪Πtest

P,I,Q |= Instable.
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Complexity Results
Complexities are inherited from the fresh variant, except for the instance complexity
which is inherited from the arbitrary variant.

Corollary 5 (Complexity Summary). For positive acyclic and cyclic fresh DABPs under
open semantics checking query stability is

1. EXPTIME-complete in process and in combined complexity;

2. ΠP
2-complete in query complexity;

3. CO-NP-complete in instance complexity;

4. PTIME-complete in data complexity.
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4.6 Positive Cyclic Arbitrary Closed
In contrast to acyclic cases, in cyclic DABPs, there is no bound on the length of an
execution. Still to check stability in DABPs (even with negation) that executes under
closed semantics it is enough to consider executions up to a certain length.
Naive Approach Consider a DABP B = 〈P, C〉, possibly with cycles, which has c
different constants, r different relations, and the maximal arity of a relation in P is a.
We make the following observations.

1. For each relation in B of arity up to a there are up to carity(R) new facts that B can
produce. Thus, B can produce up to rca new facts.

2. Further, we observe that it is sufficient to consider executions that produce at least
one new fact each mk steps. An execution that produces no facts in mk steps
has at least one instance in t hose mk steps that visits the same place two times
without producing any new fact; thus those execution steps can be cancelled from
the execution without affecting the facts that are produced.

3. From the first two points we can conclude that instead of analyzing all executions
it sufficient to consider only executions of maximal length

mkrca.

In principle, we can encode mkrca long executions as in the acyclic variant, and obtain
a program that checks for stability. Still such approach is not optimal as it applies
a decision procedure that runs in exponential time (query answering in Datalog) to
an exponentially big input (the encoding of executions in the program), thus yielding
double-exponential running time. Instead, we establish a more optimal approach that
considers only a special subset of all possible executions that are sufficient to check
stability. In particular, we look into executions that produce the largest number of new
facts possible, called greedy executions.
Greedy Executions In the following we define greedy executions, that are intuitively
executions that produce the largest number of new facts. To illustrate this consider the
positive DABP depicted below.

t1

t2

pq

Et1 = Et2 = true
Wt1 : R(X,Y )← R(X,Z), R(Z, Y )
Wt2 : S(X,Y )← R(X,Y )

R

a b
b c
c d

Assume the initial configuration has one instance o at place q. Then, possible executions
of o are of the form t1, . . . , t1, t2 where t1 repeats an arbitrary number of times. An
execution produces the largest number of facts if it traverses t1 sufficiently number of
times to produce the transitive closure of R. Then it traverses t2.

In greedy executions we distinguish between two kinds of execution steps: safe step
and critical step.

• A safe step is an execution step of an instance after which the instance can return
to the original place given the current state of the database. E.g., in the above
example, o traversing t1 is a safe step.

• A critical step is an execution step that is not safe. E.g., o traversing t2 is a critical
step.
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Based on that we define greedy sequence and greedy execution.

• A greedy sequence is a sequence of safe steps that produces the largest number of
new facts possible. E.g., a sequence where o traverses t1 at least two times, thus
generating the transitive closure of R, is a greedy sequence.

• A greedy execution is an execution where first a greedy sequence is executed,
then a critical step is executed, then a greedy sequence, then a critical step, and so
on.

Later we show that each execution can be transformed into a greedy one that
produces at least the same facts as the original one.
Strongly Connected Components in Greedy Executions Let Υ be a greedy exe-
cution with i alternations of greedy sequences and critical steps. In the following,
we characterize what are the transitions that instances traverse in the i + 1-th greedy
sequences and then in the i+ 1-th critical step. For process instance o and database DΥ

produced after Υ we define the enabled graph NΥ,o as the graph whose vertexes are
the places from N (i.e., the process net of B) and edges are those transitions from N
that are enabled for o given database DΥ. Let SCC (NΥ,o) denotes the set of strongly
connected components (SCCs) of NΥ,o. We note that two different instances may have
different enabled graphs and thus different SCCs. Further, let o be at place p after Υ
is executed, and let Np

Υ,o be the SCC in SCC (NΥ,o that contains p. Then in the next
greedy sequence, each instance o traverses the component Np

Υ,o in all possible ways
until no new facts can be produced, meaning that all instances traverse simultaneously.
Conversely, the next critical step is an execution step where an instance o traverses a
transition that is not part of Np

Υ,o, and thus it moves to another SCC.
Properties of Greedy Executions In order to motivate the encoding of greedy exe-
cutions we make the following observations:

(i) How can one characterize greedy executions? There may be several ways how
a greedy sequence orders safe steps. In all of them the same facts are produced: the
largest number of new facts. Thus, how safe steps are ordered is not important as they
all have the same impact on stability. In contrast, which critical step is executed can
be important for stability as an instance may need to choose among several possible
transitions and possibly the instance may never be able to reach the previous position in
order to execute the remaining transitions. Therefore, a greedy execution is uniquely
characterized with its critical steps, since how the greedy sequences are composed in
not relevant for stability.

(ii) How long can greedy executions can be? After each critical step, the number
of SCCs of an instance o that the instance has not reached yet decreases or stays the
same. If o is preforming the critical step then this number decreases since the instance
changes the current SCC. If another instance is performing the critical step then new
facts may be inserted and thus some of the SCCs in SCC (NΥ,o) may merge. Hence,
the number of unvisited SCCs from SCC (NΥ,o) may only decrease or stay the same.
And similarly after a greedy sequence. Thus, if there are m transitions then there can be
at most m critical steps for o, and overall, there can be at most mk critical steps where
k is the number of instances.

Based on the observations we define a Datalog program that for a given DABP
computes facts produced by the greedy executions.
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Encoding into Datalog with Stratified Negation
Let B be a positive (possibly with cycles) DABP with m transitions and k instances.
Since, critical steps uniquely characterize a greedy execution, we use a tuple of size up
to mk to encode greedy executions similarly to the acyclic variant from Section 4.4. For
example, if in a greedy execution at the first critical step instance ol1 traverses transition
th1 , in the second ol2 traverses th2 , and so on up to step i, we encode this with the tuple

ω̄ = 〈ol1 , th1
, . . . , oli , thi

〉.

With slight abuse of notation, we use ω̄ to denote also the greedy execution Υ.

• Again similarly, we use Ri(ω̄; s̄) to encode that the greedy execution ω̄ with i
critical steps produces fact R(s̄).

• To record positions of instances after each critical step we adapt Statei from
acyclic variant such that now Statei(ω̄; p1, . . . , pk) encodes that after ω̄ is exe-
cuted instance o1 is at Np1

ω̄,o1 , o2 is at Np2
ω̄,o2 , and so on.

• To store SCCs of the enabled graph we introduce relations SCC i such that for
a process instance o and a place p we have that transition t belongs to Np

ω̄,o iff
SCC i(ω̄; o, p, t) is true.

• To compute SCCi relations we first need to compute what are the places reachable
by an instance o from a place p. For that we introduce auxiliary relations Reachi

such that in the enabled graph Nω̄,o instance o can reach place p′ from p iff
Reachi(ω̄; o, p, p′) is true.

The rest of relations are the same as in the acyclic variant. Now we are ready to
define rules that compute those relations.

Greedy Sequence: Traversal Rules. To compute facts produced by a greedy sequence
we first define rules to compute reachability. Let ω̄ be a greedy execution of size i.
Relation Reach are meant to contain the transitive closure of the enabled graph Nω̄,o

for each ω̄ and o. First, a transition t from q to be p gives rise to an edge in the enabled
graph Nω̄,o if instance o can traverse that t:

Reachi(W ;O, q, p)← Ei
t(W ;O).

Then the transitive closure is computed with the following rule:

Reachi(W ;O,P1, P3)←
Reachi(W ;O,P1, P2),Reachi(W ;O,P2, P3).

Based on Reachi, SCC i is computed by taking every transition t that an instance can
reach, traverse, and return to the current place:

SCC i(W ;O,P, t)← Reachi(W ;O,P, q), Ei
t(W ;O),

Reachi(W ;O, p, P ).

Here t goes from q to p.

Greedy Generation Rule. Now we are ready to compute facts produced by the next
greedy sequence. For each instance oj at place pj after the last critical step in ω̄, and
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for each transition t that is in Npj

ω̄,oj with writing rule R(ū)← Bt(s̄), we introduce the
following greedy generation rule:

Ri(W ; ū)← Statei(W ; , . . . , , Pj , , . . . , ),

SCC i(W ; oj , Pj , t), B
i
t(W ; oj).

In other words, all transitions t that are in Npj

ω̄,oj of oj are fired simultaneously, and this
is done for all instances.

Critical Steps: Traversal Rules. To encode critical steps we adapt the traversal rules
from the acyclic variant by: (i) ensuring that at each critical step the traversing instance
changes current SCC, and (ii) allowing that critical step can be taken from any place in
the current SCC (not only current place), encoded with:

Statei+1(W,O, t;P1, . . . , Pj−1, p, Pj+1, . . . , Pk)←
Statei(W ;P1, . . . , Pj−1, P, Pj+1, . . . , Pk), Ei

t(W ; oj),

¬SCC i(W ; oj , P, t),

Reachi(W ; oj , P, q),Reachi(W ; oj , q, P ).

Here, condition (i) above is ensured by ¬SCC i(W ; oj , P, t); condition (ii) is ensured
by Reachi(W ; oj , P, q),Reachi(W ; oj , q, P ).

Critical Generation Rule. A critical step is an execution step, thus we define critical
generation rule to be the same generation rule as in the acyclic variant:

Ri+1(W,O, t; ū)← Statei+1(W,O, t; ), Bi
t(W ;O).

The rest of the program is the same as in the acyclic variant.

Summary. Let us denote the above program with Πpo,cl
P,I .

Lemma 9. Let ω̄ be a greedy execution in 〈P, I, D〉 of length i, and R1(s̄1), . . . ,
Rn(s̄n) be a set of facts. The following is equivalent:

• Facts R1(s̄1), . . . , Rn(s̄n) are produced by ω̄;

• Πpo,cl
P,I ∪D |= Ri

1(ω̄; s̄1), . . . , Ri
n(ω̄; s̄n).

Reduction to Greedy Executions

So far we seen that greedy executions and what they produce can be encoded in a
compact way using Datalog. Now we show the second important property of greedy
executions: every execution can be transformed into a greedy one such that the greedy
execution produces the same facts (and possibly more) as the original execution. The
idea is that for each instance in some execution Υ one can identify at most m execution
steps that are critical. Here m is the number of transitions in the process. We observe
that for an instance o and transition t there can be at most one critical step where o
traverses t. For example, the first occurrence of o traversing t in Υ. Thus, for k instances
there are in total at most mk critical steps. Based on those critical step in Υ we create a
greedy execution ω̄Υ that contains all execution steps of Υ and that produces all facts
produced by Υ. By considering one by one the critical steps in Υ we decide to put a
critical step in ω̄Υ iff it is not a safe step till that moment. If the step is safe then it
becomes part of a greedy sequence in ω̄Υ.
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Lemma 10. Let Υ be a closed execution in positive DABP B that produces ground
atoms R1(s̄1), . . . , Rn(s̄n) then there exists a greedy execution ω̄Υ in B that also
produces R1(s̄1), . . . , Rn(s̄n).

Proof idea. By induction on the steps in Υ by identifying each step as either a critical or
a safe step in ω̄Υ. �

Testing Program

Now assume we want to check a query Q for stability. From the given process and
query we construct test program Πtest

P,I,Q in the same way as in the acyclic variant. Then,
from Lemmas 9 and 10 the following holds.

Theorem 5. The following two are equivalent:

• Q is instable in B under closed semantics;

• Πpo,cl
P,I ∪ D ∪Πtest

P,I,Q |= Instable.

Complexity Results
From Theorem 5 it follows that process and combined complexity are the same as
program complexity for Datalog, that is EXPTIME. From Corollary 1 we have that it is
also EXPTIME-hard, thus it is EXPTIME-complete. In the same way, from Theorem 5
and Corollary 1 we have that data complexity is PTIME-complete. For query and
instance complexity, we can apply the same complexity analysis of the acyclic variant,
and thus complexities do not change.

Corollary 6 (Complexity Summary). For positive cyclic arbitrary DABPs under closed
semantics checking stability is

1. EXPTIME-complete in process and combined complexity;

2. ΠP
2-complete in query complexity;

3. CO-NP-complete in instance complexity;

4. PTIME-complete in data complexity.
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4.7 Positive Cyclic Arbitrary Open
Similarly to the acyclic case, this variant is obtained as a combination of the fresh variant
under open semantics (Section 4.2) and the arbitrary variant under closed semantics
(Section 4.6).

The idea is to extend greedy executions introduced for the closed variant. In
particular, we extend greedy sequences to include traversals of fresh instances, meaning
that now a greedy sequence includes traversals of running instances to produce the
maximum that they can produce by cycling the process net as before, and in addition
introductions and traversals of fresh instances till they produce all that they can produce.
Following abstraction principle, for fresh instances it is sufficient to consider constants
from the extended active domain, thus there is an upper-bound on what a greedy
sequence can produce. A critical step is again a non safe step by a running instance.
Similar to the closed case, to characterize greedy execution under open semantics it is
sufficient to consider its critical steps only.

We take the encoding for positive cyclic arbitrary closed variant and we adapt the
encoding for the positive fresh variant (Section 4.6).

Enconding into Datalog
For the encoding we consider the following relations

• Inp,i for i = 1, . . . ,mk of arity arity(In) + 2i such that Inp,i(ω̄; s̄) is true iff
a fresh instance with In-record can reach place p after the greedy execution
ω̄ = 〈ol1 , th1 , . . . , oli , thi〉.

• Ri of arity 2i + arity(R) such that Ri(ω̄, s̄) is true iff the greedy execution ω̄
produces R(s̄).

To define a Datalog program, we take all the rules from the closed variant and we
adapt the rules from the fresh variant as follows.

Traversal Rule. First we adapt the traversal rule from the fresh case in order to consider
what is produced in a greedy execution of length i. Thus, for each execution step i up to
mk and for every transition t from a place q to a place p, we introduce a traversal rule
that copies all fresh instances that were able to reach q and that satisfy the execution
condition Et.

Inp,i(W ;X)← Inq,i(W ;X), Ei
t(W ;X)

where Ei
t(W ;X) denotes the condition Ri

1(W, s̄1), . . . , Ri
m(W, s̄m), In(X)

Generation Rule. Similarly, we adapt the generation rule to store the facts that are
produced in relations Ri’s. For each transition t with writing rule Wt : R(ū)← Bt(s̄)
we introduce the following generation rule for each i up to mk:

Ri(W ; ū)← Inq,i(W ;X), Ei
t(W ;X), Bi

t(W ;X)

Here Bi
t(W ;X) denotes a condition similar to Ei

t(W ;X).
The rest of the encoding is as in the positive cyclic closed variant (Section 4.6).

Summary. Let us denote the above program with Πpo
P,I,Q.

Lemma 11. Let ω̄ be a greedy execution in 〈P, I, D〉 of length i, and R1(s̄1), . . . ,
Rn(s̄n) be a set of facts. The following is equivalent:
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• Facts R1(s̄1), . . . , Rn(s̄n) are produced by ω̄;

• Πpo
P,I,Q ∪D |= Ri

1(ω̄; s̄1), . . . , Ri
n(ω̄; s̄n).

Testing Program

As testing program we adopt the program Πtest
P,I,Q from the positive arbitrary closed

variant.

Theorem 6. The following two are equivalent:

• Q is instable in B under open semantics;

• Πpo
P,I,Q ∪ D ∪Πtest

P,I,Q |= Instable.

Complexity Results
Complexities are inherited from the arbitrary variant.

Corollary 7 (Complexity Summary). For positive cyclic arbitrary DABPs under open
semantics checking stability is

1. EXPTIME-complete in process and combined complexity;

2. ΠP
2-complete in query complexity;

3. CO-NP-complete in instance complexity;

4. PTIME-complete in data complexity.
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4.8 Normal Cyclic Arbitrary Closed
As shown, to check stability in the positive cyclic DABPs, it is sufficient to consider a
special kind of executions, called greedy executions, that produce the maximal extended
databases. For such executions the number of critical execution steps is polynomial in
the size of instances and transitions. In the presence of negation, inserting new facts
may also disable transitions. In principle, a transition may switch from being enabled to
being disabled many times. Thus, the greedy executions in DABPs with negation cannot
be efficiently applied as enabled graphs may also shrink, and then the number of critical
steps that one has to consider is not polynomial anymore (it is exponential). Hence, if
we directly encode the greedy executions as tuples we obtain a decision procedure that
checks stability in double exponential time (as discussed in Section 4.6).

In the following we establish a more optimal approach. We establish correspondence
between stability and brave query answering for Datalog with (unstratified) negation.
For a Datalog program Π with negation we consider Stable Model Semantics (SMS [7]).
Intuitively, under SMS, the program Π may have more than one set of facts that satisfy
all rules (a model) that is minimal, called stable model (SM). A query Q has tuple ā as
a brave answer over Π if there exists a SM of Π such that ā is an answer of Q over that
model.

In the following we establish an encoding into Datalog with negation such that for a
given DABP B = 〈P, I,D〉 and a query Q,

i) each execution in B is encoded as a SM of the encoding program, and

ii) checking stability of the query is done using brave query answering over the
program.

That is, a query Q is instable iff Q has a new query answer in one of the SMs of the
program.

Generating Exponentially Big Linear Order

Assume we are given a DABP B = 〈P, I,D〉 possible with cycles and negation in
the rules. As we discussed (in Section 4.6), to check stability in B cyclic DABPs it is
sufficient to consider executions that have up to

mkrca

executions steps, where m, k, r, c and a are parameters of B as defined in Section 4.6.
The idea is to define a program that for each execution step non-deterministically selects
one process instance and one transition, meaning that in that step the selected instance
traverses the selected transition. In that way, each SM of the program is a combination
of possible selections of instances and transitions, that represents an execution of length
mkrca. Since, the selection is done for every combination of instances and transitions,
each execution will have a corresponding SM. On the other hand, some SMs may not
correspond to any execution. We do not consider these cases when checking stability.

In order to enumerate mkrca execution steps we can, in principle, introduce a
linear order of that size. However, such an approach will not be optimal as it requires
exponential space in the size of the process to store the order. Again, as a more optimal
approach we introduce a Datalog program that generates a liner order of size mkrca

starting from a much smaller order (exponentially smaller). To define a small order we
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introduce a set of constants, called digits, DigB = {d1, . . . , dl} of size l an we establish
one linear order < on DigB:

d1 < d2 < · · · < dl

Assume that Digg
B is the Cartesian power of DigB of size g. That is, each tuple k̄ from

Digg
B is of the form:

k̄ = 〈di1 , . . . , dig 〉,
for di1 , . . . , dig ∈ DigB. We define <g as the lexicographical order on the tuples from
Digg
B. Here l and g are selected such that (i) l = kc and thus depends on P, I and D,

and (ii) g > m + r + a where m, r, and a are the parameters that depend only on P .
Then, it is not hard to check that it holds

lg ≥ mkrca.

In other words, linear order on <g is sufficient to enumerate all executions steps.
Adopting the idea in [7], we define a positive Datalog program that generates <g.

In particular, we want generate a relation Succ that stores the immediate successor in
the order <g .

We introduce the following relations that we use to encode the counting of the
execution steps.

• First(k̄) – auxiliary relation of arity g that is true iff k̄ is the first element of the
linear order <g . We use the first element to enumerate the initialization step, thus
it does not correspond to an execution step.

• Step(k̄) – g-ary relation that is true iff k̄ is a tuple from DiggB that corresponds to
some execution step, that is any tuple from DiggB except for the first one in the
order <g

• Succ(k̄1; k̄2) – relation of arity 2g that is true iff k̄2 is the immediate successor of
k̄1 in the order <g

To achieve this we need to generate successor relations Succi of size 2i (for 1 ≤ i ≤
g). For that we use the following relations:

• Digit(d) – is true iff d ∈ DigB

• Firsti(d̄) – is true iff d̄ is the first element of the linear order <i

• Lasti(ȳ) – is true iff ȳ is the last element of the linear order <i

• Succi(x̄, ȳ) – is true iff x̄ is the successor of ȳ in the linear order <i

Initialization. We initialize relations Digit, First1, Last1 and Succ1 as follows:

Digit
d1

...
dl

First1

d1

Last1

dl

Succ1

d2 d1

...
dl dl−1

Successor Rules. To generate Succi, Firsti, and Lasti we introduce the following rules:
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• Succi+1(Z,X;Z, Y )← Digit(Z), Succi(X;Y )

• Succi+1(Z1, X;Z2, Y )← Succ1(Z1;Z2),Firsti(X),Lasti(Y )

• Firsti+1(X1, X)← First1(X1),Firsti(X)

• Lasti+1(Y1, Y )← Last1(Y1),Lasti(Y )

Then, we populate relation Step with the following rule:

Step(K1, . . . ,Kg)← Digit(K1), . . . ,Digit(Kg),¬First(K1, . . . ,Kg)

In the following we use Succ for Succg , First for Firstg , and Last for Lastg .
We denote the above program as Πsucc

P ∪DB. Here, Πsucc
P is a set of Datalog rules

that is polynomial in the size of g and thus depends only on P , and DB is a database
instance that contains digits DB = {Digit(d) | d ∈ DigB} and thus depends on B. The
program generates <g by generating immediate successors and storing them in relation
Succ of size 2g. In addition, the program generates all tuples from Digg

B and stores them
in relation Step of size g. In particular,

Lemma 12. Let k̄, k̄1 and k̄2 be tuples of size g, then:

(i) Πsucc
P ∪DB |= Succ(k̄1, k̄2) iff k̄2 is the successor of k̄1.

(i) Πsucc
P ∪DB |= Step(k̄) iff k̄ ∈ Digg;

In other words, the program Πsucc
P ∪DB generates the linear order in PTIME in the

size of data and instances, and in EXPTIME in the size of process. It is believed that
EXPTIME is a strict subset of EXPSPACE.

Encoding Stability into Datalog with Negation
In the following we define a Datalog program with negation that, based on the linear
order from above, produces all maximal extended databases. Each maximal extended
database is going to be encoded as one of the SMs of the program. The program
adapts guess and check approach from answer-set programming [16] that organizes
rules in guessing rules that generate SM candidates, and checking rules that discard bad
candidates. Let us consider the following example to provide the intuition.
Example. Consider unary relations Select, NonSelect, and Const. Assume that relation
Const is populated with a set constants {c1, . . . , cn}. We want to define a program
whose stable models are such that for each model at most one constant cj is selected to
be in Select while the others are in NonSelect. I.e., we want to get the following SMs:

{Select(c1),NonSelect(c2), . . . ,NonSelect(cn)},
{NonSelect(c1), Select(c2), . . . ,NonSelect(cn)},
. . .

{NonSelect(c1),NonSelect(c2), . . . , Select(cn)}.

We start by the following two rules that partition the set of constants into Select and
NonSelect:

Select(X)← Const(X),¬NonSelect(X)

NonSelect(X)← Const(X),¬Select(X).
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Intuitively, they “enforce” each constant from Const to be either in Select or in NonSelect.
To have only SMs such that at most one constant is in Select, we introduce the

following integrity constraint:

⊥ ← Select(X1), Select(X2), X1 6= X2

If special symbol ⊥ is implied in a SM, then such SM is discarded. Note that, this
behaviour can be achieved even without the special symbol ⊥ but in a less convenient
way. 4

Encoding. Now we are ready to provide the encoding for our program. In particular,
our program

i) has guessing rules that generate each possible execution of the processes up to
the size of the linear order;

ii) has checking rules that discard badly guessed executions (e.g., two instances
traverse at the same time), and

iii) has rules that computes all facts produced at each step of the guessed executions.

To encode guessing of executions we introduce the following relations of size g + 1:

• Moved(k̄, o) means that instance o traverses at step k̄;

• NotMoved(k̄, o) means the opposite;

• Trans(k̄, t) means that at step k̄ transition t is traversed; and

• NotTrans(k̄, t) means the opposite.

Then, we introduce relations to store what is produced by a guessed execution.

• Completed(k̄) – relation of size g that we use to keep track of the steps that are
completed. That is, Completed(k̄) is true if step k̄ is completed and steps that
precede k̄ are also completed.

• Place(k̄, o, p) – is true iff after k̄-th step instance o is at place p.

Then, similarly to fresh DABPs, to store facts that are produced up to a certain step we
introduce prime version relation R′ for each R in ΣB.

• R′(k̄, s̄) is true iff R(s̄) is produced up to step k̄.

Finally, we assume transitions of the process to be stored in the relation Transition.

Initialization Rules. The first step First(K) corresponds to the initial state of the
process.

We first initialize the relation Place to store the initial position of the running
instances. That is, for every running instance o initially at place p we initialize the
starting position as follows:

Place(K; o, p)← First(K)

Then, we say that the initialization step is conclude in the following way:

Completed(K)← First(K)
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Transition guessing. Then, for each execution step we introduce rules to guess a
transition to be traversed.

At step K a transition t is either guessed to be executed (Trans(K;T )) or it is
guessed not to be executed (NotTrans(K;T )), using the following rules:

Trans(K;T )← Step(K),Transition(T ),¬NotTrans(K;T )

NotTrans(K;T )← Step(K),Transition(T ),¬Trans(K;T )

Transition Checking. To ensure that only one transition is in relation Trans for step K
we add the following functional integrity constraint on Trans.

⊥ ← Step(K),Trans(K;T1),Trans(K;T2), T1 6= T2

Intuitively, symbol ⊥ means: disallow each candidate for a SM that fires this rule.
Similarly, we introduce another functional integrity constraint to ensure that at least one
instance is selected at each execution step.

Instance guessing. Similarly to transition guessing, we encode the guessing of a single
instance with the following rules

Moved(K;O)← Step(K), In0(O, ),¬NotMoved(K;O)

NotMoved(K;O)← Step(K), In0(O, ),¬Moved(K;O)

Instance Checking. And the functional integrity constraint on Moved is:

⊥ ← Step(K),Moved(K;O1),Moved(K;O2), O1 6= O2

Copy Rules. At the first step all facts from the database are produced. Thus we
introduce the following rule

R′(K;Y )←R(Y ),First(K)

Then, what is produced in a step is copied to the subsequent step with the following rule

R′(K2;Y )←R′(K1;Y ), Succ(K2,K1)

Execution rules. The above rules selects for each execution step, an instance that
executes and a transition to be traversed. However, in order for the step to be a legal
execution step we need to ensure that:

i) the selected instance o satisfies the execution condition of the selected transition
t;

ii) that the instance o is at place q where t originates; and

iii) all previous execution steps were already completed.

Thus, for every transition t that issues from q we introduce the following rule:

Completed(K2)←Moved(K2;O),Trans(K2; t), Succ(K2,K1),

Completed(K1), Et(K1;O),Place(K1;O; q).
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Condition Et(K1;O) is defined similarly to the positive acyclic variant, where the
execution ω̄ is replaced with the execution step K1.

Generation rule. For every transition t with writing rule R(ū) ← In(s̄), Bt(s̄) we
introduce the following rule:

R′(K2; ū)←Moved(K2;O),Trans(K2; t), Succ(K2,K1),

Completed(K2), In0(O; s̄), Bt(K1; s̄).

Condition Bt(K1;O) is defined similarly to the positive acyclic variant, where the
execution ω̄ is replaced with the execution step K1.

Updating position. To update the position of the object that executes transition t
pointing at place p, we introduce the following rule

Place(K;O; p)← Moved(K;O),Trans(K; t),Completed(K)

All other instances will not change their places

Place(K2;O;P )←Place(K1;O;P ), Succ(K2,K1),

Completed(K2),¬Moved(K2;O)

Summary. Let the above rules define the program Πcl
P for closed (cl) DABPs, and let

DI be a database instance that contains In0 facts.

Lemma 13. Let k̄ be an execution step in B, and let R(s̄) be a fact. The following is
equivalent:

• There is an execution of length k̄ in B that produces R(s̄);

• Πsucc
P ∪DB ∪Πcl

P ∪DI ∪D |=brave R
′(k̄; s̄).

Note that in this case the encoding rules have simpler format than in the positive
case. This is because the complexity of the problem is now transferred to the semantics
of the encoding program, that is SMS.

Testing Program

Now we want to test query Q for stability. Similarly as before, we collect new query
answers in relation Q′ with the rule:

Q′(X)← R′1(K; ū1), . . . , R′n(K; ūn).

Let Πtest
Q be the test program containing Q, Q′ and the test rule as in previous cases.

Then the following holds:

Theorem 7. The following is equivalent:

• Q is instable in B = 〈P, I,D〉 under closed semantics;

• Πsucc
P ∪DB ∪Πcl

P ∪DI ∪D ∪Πtest
Q |=brave Instable.

Complexity Results
The above Theorem provides an upper bound for process, data and combined complexity.
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Process complexity The program from Theorem 7 is a Datalog program with nega-
tion that is interpreted under SMS. Query answering in such programs is in CO-NEXPTIME.
We can show also the opposite, that the reasoning is CO-NEXPTIME-hard. Thus, our
encoding of the program is optimal (as hard as the stability problem).

To show the hardness we show that instability is NEXPTIME-hard by simulating
brave query answering over a Datalog program. For a program Π ∪ D and a fact query
A, we construct a singleton DABP BΠ,A = 〈PΠ,A, I0,D〉 that produces dummy iff
there exists a stable model of Π∪D that contains A. Here, program Π is encoded in the
process part and data part of the program D is encoded in the database of the process.
As usual, the test query is Qtest.

Proposition 4. Π ∪ D |=brave A iff Qtest is stable in 〈PΠ,A, I0,D〉.

Proof. See Subsection 4.8.1.

Instance, Data and Query Complexity From Theorem 7 we have that instance
complexity is in coNP since data complexity of brave query answering is NP-hard. Also
this is the lower-bound as from Proposition 4 we have that data complexity of brave
query answering is at least as hard as checking instability. Similarly, from Theorem 7
we have that instance complexity is in CO-NP. It is also CO-NP-complete since it is
CO-NP-hard already for acyclic case. Finally, query complexity is ΠP

2-complete for the
same reasons as in other cases.

Corollary 8 (Complexity Summary). For normal cyclic arbitrary DABPs under closed
semantics checking stability is

1. CO-NEXPTIME-complete in process and combined complexity;

2. ΠP
2-complete in query complexity;

3. CO-NP-complete in instance and data complexity.
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4.8.1 CO-NEXPTIME- and CO-NP-hardness in Process and Data

In the following we prove Proposition 4 defined above.
In particular, we show how to encode the brave reasoning under Stable Model

Semantics (SMS) for a given Datalog program Π ∪ D with negation into stability
problem for normal cyclic singleton DABP 〈PΠ,A, I0,D〉 under closed semantics,
where program Π is encoded in the process part and data part of the program D is
encoded in the database of the process. As usual, the test query is Qtest.

Standard notation for Datalog program with negation. For Datalog programs under
stable model semantics (SMS) we use the following notation. A normal Datalog rule is
a rule of the form

R(ū)← R1(ū1), . . . , Rl(ūl),¬Rl+1(ūl+1), . . . ,¬Rh(ūh).

We use H to denote the head of the rule R(ū), and A1, . . . , Al,¬Al+1, . . . ,¬Ah to de-
note body atoms R1(ū1), . . . , Rl(ūl),¬Rl+1(ūl+1), . . . ,¬Rh(ūh) Then we can write
the rules r as:

H ← A1, . . . , Al,¬Al+1, . . . ,¬Ah.

We represent a fact R(ū) as a Datalog fact rule R(ū)←.
A Datalog program with negation Π is a finite set of normal Datalog rules {r1, . . . ,

rk}.
Grounding of a Datalog program:

• Let r be a normal Datalog rule and C a set of constants. The grounding gndC(r)
of r is a set of rules without variables obtained by substituting the variables in
r with constants from C in all possible ways. In this way we can obtain several
grounded rules from a non-grounded rule.

• The grounding gnd(Π) for a program Π is a program obtained by grounding rules
in Π using the constants from Π.

• We note that program gnd(Π) and Π have the same semantic properties (they
have the same SM, see later). Program gnd(Π) is just an expanded version of Π
(it can be exponentially bigger than Π).

Stable model semantics. Concerning stable model semantics we use the following
notation. An interpretation of a program represented as a set of facts. Let M be an
interpretation. We define the reduct of Π for M as the ground positive program

ΠM = {A← A1, . . . , Al | A← A1, . . . , Al,¬Al+1, . . . ,¬Ah ∈ gnd(Π),

M ∩ {Al+1, . . . , Ah} = ∅}

Since ΠM is a positive ground program it has a unique Minimal Model (MM), in
the inclusion sense Then,

M is a stable model (SM) of Π iff M is the minimal model of ΠM .

Given a program Π and a fact A we say that

Π |=brave A

if there exists a SM M of Π such that A ∈M .
For a given Π and a fact A, deciding whether Π |=brave A is NEXPTIME-hard.
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Encoding of Brave Entailment into Stability Problem

Given a program Π ∪ D and a fact A we construct a DABP BP,D,A〈PΠ,A, I0,D〉 such
that for a test query Qtest ← dummy the following holds:

Π ∪ D |=brave A iff Qtest is stable in 〈PΠ,A, I0,D〉.

For convenience, in the following we use Π to denote Π ∪ D, unless otherwise is stated.
Intuitively, process BP,D,A is constructed such that the following holds.

• The process generates all possible interpretations for Π using the variables and
constants from Π. That is, it generates all possible candidates for SMs of Π.

• For every such SM candidate M , the process checks if M is a SM of Π by:

i) computing the MM of ΠM denoted with M ′;

ii) checking if M ′ = M .

• If M is a SM of Π then the process checks for the given fact A whether it holds
that A ∈M . If so, the process produces dummy.

We organize BΠ,A in 6 subprocesses represented in Figure 16.

Compute
Successor

Guess SM 
Candidate

start

Compute MM 
Candidate

Check MM 
Candidate

Check SM 
Candidate

Insert 
dummy

Figure 16: Subprocesses composing the process net of PΠ,A.

The subprocesses are intuitively defined as follows:

Subp 1. (Compute successor relations) First we compute the successor relations Succi

of sufficient size i, that we need in the next steps. This we need for technical
reasons.

Subp 2. (Guess a SM candidate) At this step, the process produces a SM candidate by
non-deterministically producing facts obtained from relations and constants that
appear in the program. Let R be a relation in Π. Then, for each R-fact that can
be obtained by taking the constants from Π, a process does an execution step at
the choice place from which if an instance traverse one way the process produces
this R-facts, and if it traverses the other way then it does not.

We denote with M the guessed SM candidate.

Subp 3. (Compute a MM candidate of the reduct) We want compute the MM of the
reduct ΠM . To do so, we first compute a candidate M ′ for the MM by by non-
deterministically applying the rules of ΠM . Computing a candidate and the testing
if the candidate is the MM is our approach to find the MM.

Subp 4. (Check if M ′ is the MM of the reduct) At this step we check if M ′ is indeed
the minimal model of the reduct ΠM . If this is not the case, the process is not
going to progress further.
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Subp 5. (Check if SM candidate is a SM) If we are at this step then M ′ is the MM of
ΠM . Now we check if M ′ = M . If this is the case, then M is a stable model of
Π.

Subp 6. (Insert dummy) Finally, we check if A ∈M . If this is the case then the process
produces dummy.

Instance and data part.

We initialize the instance part I0 by placing a single instance at the start place, we set
database to be the data part of the program D.

Process part.

In the following we construct the process part PΠ,A.

Subp 1: Computing successor relations.

In order to nondeterministically select which R-facts to produce for a relation R in
Π, we introduce sufficiently big linear order that index all R-facts. Since there are
exponentially many R-facts we define the process rules that compute the order starting
from an order of a polynomial size. The rules that compute the exponentially big order
uses the same rules define as in Lemma 12. Here, the difference is that we use constants
from Π as digits.

Let C = {b1, . . . , bc} be the constants from Π. We define a linear order < on C
such that

b1 < b2 < · · · < bc.

Let <j be the lexicographical order linear order on Cj , defined from < for some
j > 0.

Further, let n be the maximum between

• the maximal arity of a relation in Π; and

• the largest number of variables in a rule in Π.

We want to compute the successor relation Succj that contains immediate successors in
the order <j for j = 1, . . . , n

Vocabulary and Symbols. To encode the order as database relations we introduce
relations: Const of size 1 to store constants from Π; Succj of size 2j to store immediate
successors in the order <j ; Firstj and Lastj to store the first and the last element of the
order <j . That is,

• Const(b) – is true iff b is a constant from Π.

• Succj(b̄, b̄′) – is true iff b̄ is the immediate successor of b̄′ in the order <j ;

• Firstj(b̄) – is true iff b̄ is the first element in the order <j ;

• Lastj(b̄) – is true iff b̄ is the last element in the order <j .

Initialization. We initialize relations for the ordering as follows:

• Const(b) – we intialize relation Const with all the constants from Π;
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• Succ1(b, b′) – we initialize relation Succ1 saying that b′ is the successor of b;

• Firstj(b, . . . , b) – is the initialization for relation Firstj such that b is the first
element in the order <;

• Lastj(b, . . . , b) – is the initialization for relation Lastj such that b is the last
element in the order <.

t002

t02

t00n

t0n
...

t1

Figure 17: Subprocess 1 computes successor relations Succi for i = 1, . . . , n

Encoding into the process. We introduce 2n− 1 transitions t1, t′2, t
′′
2 , . . . , t

′
n, t
′′
n (see

Figure 17) such that t′j and t′′j are used to generate Succj . Then, we set the execution
condition for these transitions to be always executable:

Et′j
= Et′′j

= true.

We use the writing rules to populate the relations Succj for 1 < j ≤ n as follows:

Wt′j+1
: Succj+1(Z,X,Z, Y )← Const(Z), Succj(X,Y );

Wt′′j+1
: Succj+1(Z1, X, Z2, Y )← Succ1(Z1, Z2),Firstj(X),Lastj(Y ).

Once all successor relations are generated transition t1 can be executed:

Et1 : Succn(X, ), Lastn(X).

Subp 2: Guessing a SM candidate.

Let R1, . . . , Rm be the relations in Π. For every relation R in Π we create a subprocess
Guess-R that non-deterministically guesses R-facts that belong to a SM candidate M .

Subprocess 2 is composed by connecting subprocess Guess-R for each relation R
as depicted in Figure 18.

Guess Guess Guess
R1 R2 Rm

. . .

Figure 18: Subprocess 2
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Notation. We assume the following notations: a arity of a relation R in Π; m is the
number of relations in Π; DoneR is a relation of arity a such that DoneR(ū) is true after
the subprocess Guess-R has guessed whether to include R(ū)-fact in the SM candidate
or not

Encoding into DABPs. The subprocess Guess-R is defined as in Figure 19

t1

t2

t3

t4

t5

t6

t7

Figure 19: Subprocess Guess-R

For convenience introduce condition CurrentR(X) that is true if the next R(X)-fact
for which the process has to decide whether to include it in the SM candidate or not.
The condition is defined with:

CurrentR(X) : Succa(X,Y ),DoneR(Y ),¬DoneR(X).

Transitions t1 and t2 are executed non-deterministically. Intuitively, they non-
deterministically decide whether the R-fact, obtained by grounding R with constants
from Firsta, belongs to the SM candidate (t1) or not (t2):

Et1 = Et2 : true;

Wt1 : R(X)← Firsta(X);

Wt2 : true← true.

Then, transition t3 inserts that the guess for the first R-fact has been made by
inserting DoneR(x̄):

Et3 : true;

Wt3 : DoneR(X)← Firsta(X).

Transitions t4 and t5, similarly to transitions t1 and t2, non-deterministically guess
whether the next R(X)-fact belongs to the SM candidate or not:

Et4 = Et5 : true;

Wt4 : R(X)← CurrentR(X);

Wt5 : true← true.

Transition t6, similarly to transition t3, inserts fact DoneR(X) after decision for
R(X)-fact has been made:

Et6 : true;

Wt6 : DoneR(X)← CurrentR(X).

When all guesses have been made, transition t7 can be executed and the next
subprocess will be executed:

Et7 : DoneR(X),Lasta(X);

Wt7 : true← true.
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Subp 3: Compute the minimal model of the reduct.

The subprocesses 3 and 4 compute the MM M ′ of ΠM . Intuitively, this done in the
following way:

• Since ΠM is a positive ground program the MM of ΠM is unique and it can be
computed as the Least Fixed Point (LFP) on the rules in ΠM .

• In subprocess 3, depicted in Figure 20, the process produces facts that are in the
LFP of ΠM . For every relation R we introduce a relation R′ that stores facts
produced by the LFP computation.

• In principle, subprocess 3 can produce all facts from the LFP if it executes a
sufficient number of times. However, it can produce also only a part of the LFP if
it decides to traverse tk+1.

• In other words, subprocess 3 non-deterministically decides how many facts from
the LFP to produce.

• In subprocess 4 we check if all facts from the LFP of ΠM are indeed produced at
subprocess 3.

Vocabulary and Symbols.

• R′(ū) – holds iff R(ū) is in the LFP of ΠM (i.e. it is in the MM of ΠM ) and it is
computed by subprocess 3.

...

t0

t1

tk

tk+1

Figure 20: Subprocess 3 computes the MM candidate of the reduct

Encoding into DABP. Let {r1, . . . , rk} be the rules in Π. For every rule ri of the form
H ← A1, . . . , Al,¬Al+1, . . . ,¬Ah we introduce transition ti as depicted in Figure 20
with execution condition:

Eti : true

and writing rule as follows:

Wti : H ′ ← A′1, . . . , A
′
l, A1, . . . , Al,¬Al+1, . . . ,¬Ah.

Here, atomsH ′, A′1, . . . , A
′
l are the same asH,A1, . . . , Al, except that each relation

name R is renamed with R′. Atoms A1, . . . , Al,¬Al+1, . . . ,¬Ah evaluates over M
and they are true iff there exists a grounding substitution θ (a substitution that replaces
variables with constants) such that the ground rule θA← θA1, . . . , θAl is in the reduct
ΠM . For l = 0, the fact θH ′ is produced by the process since the rule θH ← is in
ΠM as thus H is in the LFP of ΠM . For l > 0, assume that θA′1, . . . , θA

′
l are already

produced by the process such that θA1, . . . , θAl are in the LFP of ΠM . Then we have
that θH ′ is produced by the process iff θH is in the LFP of ΠM .
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Subp 4: Check if the computed model is a minimal model of the reduct. After the
execution of subprocess 3 we obtain a MM candidate M ′ as a set of R′-facts produced
by the process.

In this step we check if M ′ is indeed a MM of ΠM , because in the preceding step it
may be that the process has generated a part of the LFP of ΠM .

For the check we define the process as in Figure 21, where each transition tri checks
if M ′ contains all facts in the LFP that can be produced by the rule ri.

tr1 tr2 trk
trcheck. . .

Figure 21: Subprocess 4 checks if the MM candidate is the MM of the reduct

Notation.
We introduce unary predicate failMM that is true iff M ′ is not a MM.

Encoding into DABPs.
For every rule r we introduce a transition tr with execution condition

Etr : true,

and with writing rule as follows:

Wtr : failMM ←A′1, . . . , A′l,¬H ′, A1, . . . , Al,¬Al+1, . . . ,¬Ah

Fact failMM is produced by the process iff facts θA′1, . . . , θA
′
l are produced by the

subprocess 3 while θH ′ is not, for some substitution θ. Obviously, this is true iff M ′ is
not the MM of the reduct.

Last transition tcheck is executable if none of the previous steps has generated the
failMM predicate:

Etcheck : ¬failMM.

Subp 5: Checking if SM candidate is a SM. If the process execution can reach
subprocess 5 it means that M ′ is indeed the MM of reduct ΠM . It remains to check if
M is a SM of Π, that is if M ′ = M .

For this check we define the subprocess as in Figure 22.
Transition t′i checks if there is a R′i-fact for which there is no Ri-fact and transition

t′′i checks if there is a Ri-fact for which there is no R′i-fact.

t01 t02 t0m t00m. . .

Figure 22: Subprocess 5 checks if SM candidate is a SM

Notation. We introduce unary predicate faili that holds if M ′ 6= M .

Encoding into DABPs. Transition t′i is encoded as follows:

Wt′i
: faili ← R′i(X),¬Ri(X).

Transition t′′i is encoded as follows:

Wt′′i
: faili ← Ri(X),¬R′i(X).
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Subp 6: Insert dummy. After the execution of subprocess 5 if no faili facts were
produced, then M ′ = M

Subprocess 6 checks whether this is the case. If M ′ = M and A ∈M the process
inserts dummy

tdummy

Figure 23: Subprocess 6 inserts dummy

Encoding into DABPs. The subprocess is depicted in Figure 23 Transition tdummy

checks if M ′ = M with the execution condition:

Etdummy : ¬fail1, . . . ,¬failm.

By traversing tdummy if condition A ∈M then dummy is inserted with the following
writing rule:

Wtdummy : dummy← A.

All together, we have that fact A is produced by the process iff there exists a SM of
the program that contains A. This concludes the proof.
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5 Stability in Rowo Data-aware Business Process Model
In general, reasoning about stability in DABPs can be very complex in the worst case.
The main reason is that processes can read relations that can also be written, and in that
way create recursive inferences. Rowo (read-only write-only) DABPs forbid this. We
will see that this affects complexities to drop significantly.

5.1 Introduction
Checking whether an arbitrary DABP is rowo can be done in linear time in the size of
the process. In some cases, when a DABP is not rowo, it may behave like rowo since
some of non-rowo transitions may not be executable. For instance, for a processes in a
certain time interval a transition may be not executable because the deadline to execute
it has already expired or it is early to execute it.
Example. Continuing our running example, imagine that the process is in the period
after the pre-enrollment (after 30th Sept.). In this period, students do not have the oppor-
tunity to complete their applications, neither to confirm or withdraw their applications.
Then, transitions ‘pre-enrol cond.’, ‘complete app.’, ‘pre-enrol stud.’, ‘register app.’, and
‘withdraw app.’ cannot be traversed since their execution conditions cannot be satisfied
or they cannot be reached. The only part of the process that can be executed is shown
in Figure 24. We observe that this remaining part is actually a rowo process. Thus
reasoning in this case may become less complex. 4

is intl. app.

is reg. app.

isn't
 admitted

is admitted

reg. in time

early / reg. late

early / intl. late

intl. in time register directly  

approve
 app.

reject app.

start
end

acad. 
check

Figure 24: Student registration process after 30th September.

In principle, checking if a general process behaves as a rowo, would require checking
that it does not write in a relation from which it reads. Thus, checking if a general DABP
behaves as a rowo is as complex as checking stability. Still we expect that for limited
parameters, such as deadlines, one can obtain a more efficient complete procedure. We
leave this for future investigation.
Observations. To check stability of a rowo DABP, we construct a non-recursive
Datalog program where process and data instances are encoded as a set of facts. We
make several observations on why rowo encoding becomes simpler:

(i) since the written facts cannot be read, an instance cannot affect own execution
or executions of the other instances by the facts it generates, and thus one can
analyze produced facts by observing each instance independently;
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(ii) cycles do not affect complexity since no additional fact can be produced if an
instance traverses a transition more than once;

(iii) negation in the rules is always unstratified since it is on the read-only part of the
database;

(iv) if n is the size of the query then the process has to insert at most n new facts to
create a new query answer, and to generate those facts it needs at most n process
instances.

Based on the observations above we discuss how to define the encodings for rowo
DABPs based on those for the general variants.

5.2 Rowo Normal Fresh Open
First we analyze a rowo B = 〈P,D〉 under open semantics. We adapt encodings for
open positive DABPs defined in Section 4.2.

From (ii) we have that each instance needs not to traverse a transition more than
once in order to produce the most that the transition can produce. It may need to traverse
some transitions more than once to reach other transitions, but in total it is sufficient
that it makes at most m2 traversals to reach all transitions, where m is the number of
transitions. Thus, it is sufficient to consider executions of a single instance of maximal
size m2, and therefore, we can eliminate recursion from traversal rules by creating a
bounded derivation (as in the acyclic variant).

Based on these observations, we adapt Πpo,fr
P from Section 4.2 as follows. We

introduce relations

• Inip for each place p in P and each i up to m2, to record that a fresh instance can
reach place p in i steps, that is, Ini

p(s̄) is true iff a fresh instance with In(s̄)-record
can reach place p in i steps.

Traversal Rules. For each transition t from a place q to a place p and for each i up to
m we introduce a traversal rule as follows:

Ini+1
p (X)← Ini

q(X), Et(X)

Note that, as a difference from the general case, here Et(X) denotes the execution
condition evaluated over the initial database (rather than on the extended database as
E′t(X) would denote).

Generation Rules. Similarly, for each transition t from above we introduce the follow-
ing generation rule:

R′(ū)← Iniq(X), Et(X), Bt(X)

As pointed in the observation (iii) above negation in Et(X) and Bt(X) does not make
reasoning more complex since negation is on the base relations that are not updated by
the process.

Summary. Let Πro,fr
P be the non-recursive Datalog program with stratified negation

that encodes the rowo process P obtained from Πpo,fr
P substituting the traversal and

generation rules with the rules above. The rest of the program is the same as in the
general positive open variant.
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Lemma 14. Let R′(ū) be a fact defined over adom∗, then the following is equivalent:

• there is an execution in B that produces R(ū)

• Πro,fr
P ∪ D |= R′(ū)

Let Πtest
Q be the test program based on a query Q as defined for the general variant.

Theorem 8. The following is equivalent:

• Q is instable in B under open semantics

• Πro,fr
P ∪ D ∪Πtest

Q |= Instable

5.3 Rowo Normal Arbitrary Closed
We now consider a possibly cyclic rowo B = 〈P, I,D〉 under closed semantics. We
adapt the encoding from the general acyclic closed variant. The main difference is that
each instance is encoded independently of the others (because of (i)). I.e., we encode an
execution of a single instance as a tuple ω̄ of the form

ω̄ = 〈o; th1
, . . . , thi

〉.
meaning that instance o traverses first th1

then th2
, and so on.

Similarly we adapt Ri’s and Statei’s from the general case such that:

• Ri(o; th1
, . . . , thi

; s̄) denotes that the instance o after traversing th1
, . . . , thi

pro-
duces R(s̄); and

• Statei(o; t1, . . . , ti; p) denotes that the instance o after traversing t1, . . . , ti is
located at place p.

Similarly to the previous variant, cycles can be dealt with bounded derivations of
maximal length m2, so i ranges from 1, . . . ,m2. Similarly to the general variant, we
use In0(o; s̄) to associate instance o with the input record In(s̄). In this way, we obtain
the facts that can be produced by each instance. Then we introduce additional rules
that combine facts produced by different instances. Assume we are given a query
Q(X) ← R1(ū1), . . . , Rn(ūn) that we want to check for stability. To this end, we
introduce the following relations.

• Path is a relation with arity m2 + 1 that contains legal paths of an instance.
Path(o; t̄, ε̄) is true iff t̄ is a legal path in P for instance o. For technical reasons
we introduce ε to denote an empty transition. Then, ε̄ is vector of ε that we use to
fill in remaining positions in Path (|ε̄| = m− |t̄|).

• R′ is an auxiliary relation of size 1 +m2 + arity(R) that we introduce for each
R in B to store R-facts produced by an instance. That is, R′(o; t̄, ε̄; s̄) in true iff
R(s̄) is produced after o traversed t̄.

• Execj are relations of arity (m2 × j) + j for every j = 1, . . . , k that combines
legal paths for different n instances where n is is the number of atoms in the query.
Then, Execj(o1, t̄1, . . . , oj , t̄j) is true iff tuple t̄l is a legal path for instance ol
and if oh = ol then t̄h = t̄l. This relation we use to record all combinations of
instances that can contribute to create a new query answer (see point (iv) above),
thus if two facts are produced by the same instance (oh = ol) then the facts have
to be produced on the same legal path (t̄h = t̄l).

Again i ranges from 1, . . . ,m2. Now we define a program that generates those relations.
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Encoding into Datalog

Initialization Rules. First we adapt the initialization rules for a single instance:

State0(o; q)← true iff q is the starting place of instance o, and

R0(O;Y )← In′(O; ), R(Y ).

Traversal Rules. Similarly, we adapt traversal rules to be for a single instance, as
follows:

Statei+1(O;T , t; p)← Statei(O;T ; q), Et(O)

for each transition t from place q to place p and Et(O) is the same as Et except that
each atom In(s̄) is replaced with In0(O, s̄) and T is a vector of different variables of
size i.

Generation Rules. For a transition t with writing rule Wt : R(ū)← Bt(s̄), the genera-
tion rules become:

Ri+1(O;T , t; ū)← Statei+1(O;T , t; p), Bt(O; s̄).

Here Bt(O) is obtained in the same way as Et(O).

Copy Rules. Then we adapt the copy rules as follows:

Ri+1(O;T , t;U)← Ri(O;T ;U), and

R′(O;T , ε̄;U)← Ri(O;T ;U)

where the size of ε-vector |ε̄| = m2 − i.
Summary. We denote the above program as Πro,cl

P . Then we have that the following
holds:

Lemma 15. Let o be an instance in B, a list of transitions t̄ in B of size i, and R(ū) a
fact, then the following is equivalent:

• after o traverses t̄ the fact R(ū) is produced;

• Πro,cl
P ∪ D |= Ri(o; t̄; ū).

Testing Program

Combining Rules. Then we need to combine the atoms produced by the different
instances, e.g.,

Ri
1(o1; t̄1; s̄1)

...

Ri
n(on; t̄n; s̄n).

and ensure that atoms produced by one instance are all produced following one path.
To do this we need to ensure that if oi = oj ⇒ t̄i = t̄j . This is achieved with the
combining rules.
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First we copy all legal paths of an instance from Statei into Path relation:

Path(O;T , ε̄)← Statei(O;T ; ) where |ε| = m2 − i.

Then we initialize Exec1 with all legal paths of an instance.

Exec1(O;T )← Path(O;T ).

Then we combine different paths in the following way. If instance Ol executes T l and
the same instance executes T i+1 then T l and T i+1 must be the same. This is captured
with the following rules:

Execj+1(O1,T 1, . . . , Ol, T l, . . . , Oj , T j , Oj+1, T j+1)←
Execj(O1, T 1, . . . , Ol, T l, . . . , Oj , T j),

Path(Oj+1;T j+1),

Ol = Oj+1, T l = T j+1

for every l ∈ 1, . . . , i.
If the instance Oj+1 is different from all the other instances O1, . . . , Oj then exe-

cuting path of Oj+1 can be any legal path

Execj+1(O1,T 1, . . . , Ol, T l, . . . , Oj , T j , Oj+1, T j+1)←
Execj(O1, T 1, . . . , Ol, T l, . . . , Oj , T j),

Path(Oj+1;T j+1),

¬(O1 = Oj+1),¬(O2 = Oj+1), . . . ,¬(Oj = Oj+1).

Q′-rule. Then, Q′ collects what has been produced for relations R1, . . . , Rn for the
give query Q(X)← R1(ū1), . . . , Rn(ūn) with the rule

Q′(X)←Execn(O1,W 1, . . . , On,Wn),

R′1(O1;W 1; ū1),

. . .

R′n(On;Wn; ūn).

Test Rule. The test rule is then as before:

Instable← Q′(X),¬Q(X).

Summary. Let us denote with Πtest,ro
P,Q the testing program for Q defined above. The

program is non-recursive Datalog with stratified negation.
Let DIn be the database that encodes the instance part In.

Theorem 9. The following are equivalent:

• Q is instable in B under closed semantics;

• Πro,cl
P ∪ DIn ∪ D ∪Πtest,ro

P,Q |= Instable.
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5.4 Rowo Normal Arbitrary Open
For arbitrary rowo under open semantics, similarly to the general variants, the encoding
is obtained combining the encodings for the open and the closed variants.

To combine what comes from the instances in the process and the new ones it is
enough to add rules that will combine the program for normal cyclic arbitrary closed
(Πro,cl
P,Q) and normal cyclic fresh open (Πro,fr

P,Q).
To this end, for a given query Q(X) ← R1(ū1), . . . , Rn(ūn), we introduce rela-

tions:

• Bi
Q of arity arity(R1) + · · · + arity(Rn) that contains on the first i arguments

what comes from a mixture of existing and new process instances while the others
come only from existing process instances, for i = 1, . . . , n.

Encoding into Non-Recursive Datalog Let B = 〈P, I,D〉 be a rowo normal arbi-
trary open DABP.

Now we define rules that compute relations introduced above.
First we consider what is produced by the running instances

B0
Q(Y 1, . . . , Y n)←Execn(O1,W 1, . . . , On,Wn),

R′1(O1;W 1; ū1),

. . .

R′n(On;Wn; ūn).

Then, for the i-th atom we both consider the case in which it was produced by a
new instance (1) and the case it was produced by the instances already in the process
(2). These cases are added to the combinations obtained for the atoms from 1 to i− 1.
We do this for every i = 1, . . . , n.

Bi
Q(. . . ,Y i−1, Y i, Y i+1, . . . )← (1)

Bi−1
Q (. . . , Y i−1, , Y i+1, . . . ), R

′
i(Y i)

Bi
Q(. . . ,Y i−1, Y i, Y i+1, . . . )← (2)

Bi−1
Q (. . . , Y i−1, Y i, Y i+1, . . . ).

Then, we add the Q′-rule to collect what has been produced by the process for
relations R1(ū1), . . . , Rn(ūn) as follows:

Q′(X)← Bn
Q(Y 1, . . . , Y n).

The above rules extend the testing program Πtest,ro
P,Q for normal cyclic arbitrary closed.

We denote the new testing program with Πtest,ro,op
P,Q .

Theorem 10. The following are equivalent:

• Q is instable in B under open semantics;

• Πro,cl
P ∪Πro,fr

P ∪ DI ∪ D ∪Πtest,ro,op
P,Q |= Instable.
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5.5 Rowo Complexity
Data and Instance Complexity Instances and data are encoded as facts of a non-
recursive Datalog program, hence instance and data complexity is in AC0. It also means
that the stability problem can be reduced to the problem of evaluating a FOL query that
encodes process part over a database that stores the process instances and the database
instance. Since, FOL queries correspond to SQL queries (without aggregates), this
opens the possibility for an efficient reasoning on stability using established RDBMS
technologies.

5.5.1 Rowo CO-NP-hardness in Process Complexity

The process complexity is even lower than program complexity for non-recursive
Datalog programs.

The process complexity of checking instability is NP-complete which is as complex
as evaluating CQs. This holds already for the simplest variant of rowo. Intuitively, the
upper-bound follows from the observation (iv) above. In fact, one can construct a single
CQ instead of Datalog rules, but the construction is very technical.

To show hardness we encode 3-colorability problem.

Lemma 16 (Process Complexity 3-colourability Encoding). There exist a configuration
Car, a fresh configuration Cfr, and a query Qtest such that for every graph G one can
construct a positive rowo process PG in logarithmic space such that the following are
equivalent:

• G is not 3-colorable;

• Qtest is stable in 〈PG, Car〉 under closed semantics;

• Qtest is stable in 〈PG, Cfr〉 under open semantics.

Proof. The test query is Qtest ← dummy, and read-only databases for both Car and Cfr

contain exactly 6 correct colourings E(red, blue), . . . , E(green, blue). Given a graph
G = (V,E) we construct a Boolean positive query QG ←

∧
(vi,vj)∈E E(xi, xj) such

that G is 3-colourable iff QG evaluates to true over the read-only database. Using this
query we construct a DABP with a single transition t. We set that query to be the
execution condition Et = Qt for t. In the case of closed semantics we place an instance
at the beginning of t. We add the writing rule Wt : dummy← true that writes dummy if
the transition is executed. From there the claim follows directly in both cases.

5.5.2 Rowo CO-NP-membership in Process Complexity

First we establish an auxiliary Lemma that shows how complex is to check whether a
set of facts is produced by a singleton DABP.

Lemma 17 (Complexity Singleton Rowo DABPs). For any ground atoms A1, . . . , An,
one can decide in NP time, whether for a given singleton rowo DABP B, there is a
closed execution in B that produces A1, . . . , An.

Proof. Assume the instance o is at a place p = MP (o) and it has an input record
I(s̄) = MS(o). To show the claim it is sufficient to guess a closed execution Υ
consisting of the traversals by o, and then verify whether atoms A1, . . . , An can be
produced by such execution. In the case of singleton rowo DABP under closed semantics,
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a closed execution is uniquely determined by a path in P . Thus, we guess a path t1, . . . ,
tm in P that starts in p. This guess is polynomial in the size of P . For all transitions
on the path, we further guess assignments α1, . . . , αm for the execution conditions
Et1 , . . . , Etm . Then for each writing rule Wti of the transition ti we guess up to n
assignments βl

ti for 1 ≤ l ≤ n, because a rule may need to produce more than one fact,
but no more than the size of the query. In principle, only a subset of Wt1 , . . . , Wtm may
be needed to produce atoms A1, . . . , An. Wlog we can guess the assignments for all.
Now we verify. Firstly, we verify whether the path can be traversed by the instance.
This is, if for every execution condition Eti the ground query αiEti evaluates to true
in D ∪ {In(s̄)}. Secondly, we verify whether A1, . . . , An are produced on the path by
checking if for every Ai there exist a writing rule Wtj = Qtj → Atj and assignment
βl
tj such that the ground query βl

tjQtj evaluates to true in D ∪ {In(s̄)} and Ai is equal
with the head of the writing rule βl

tjAtj . Since all guesses and checks are polynomial in
the size of B the claim follows directly.

Based on Lemma 17 we show that checking instability is in CO-NP for closed
semantics in process complexity.

Lemma 18 (Process Complexity Upper Bounds Closed). Checking stability in rowo
DABPs under closed semantics is in CO-NP in process complexity.

Proof. To show the upper bound in process complexity we assume a fixed query
Q(x̄)← A1, . . . , An. We want to show that for a given rowo DABP 〈P, C〉 checking
instability of Q under closed semantics can be decided in nondeterministic polynomial
time in the size of 〈P, C〉. Then checking stability is in CO-NP. We proceed by guessing
ground atoms that make the query instable and then checking whether those atoms can
be produced. (i) First we guess an assignment θ for A1, . . . , An. For the range of θ
we take constants from B, because the DABP executes under closed semantics, and
therefore, the process can only produce such atoms. Then we split the atoms on those
ones that are already in the database, and those ones that need to be produced by the
process. Wlog we assume that the latter ones are θA1, . . . , θAk. (ii) Now we need to
guess an execution that produces θA1, . . . , θAk using the instances from B. To guess
that it is enough to guess an execution for each instance individually and then combine
those individual executions in one execution. (iii) For that aim, we guess m instances
o1, . . . , om from the configuration that should altogether produce θA1, . . . , θAk. For
each instance oi, where 1 ≤ i ≤ m, we guess a subset θAi

1, . . . , θA
i
ni

of θA1, . . . , θAk

that is produced by this instance. Subsets are guessed in such a way that they cover
the superset. (iv) Now, we verify. From Lemma 17 we get that for an instance oi
one can check in nondeterminstic polynomial time if oi can produce θAi

1, . . . , θA
i
ni

in B. (v) Finally, we verify that θx̄ 6∈ Q(D), i.e., that the query is not stable. To
conclude, the described procedure return “yes” if Q is not stable in 〈P, C〉, and it runs
in nondeterminstic polynomial time in the size of 〈P, C〉.

Now we investigate process complexity for fresh rowo under open semantics. Ac-
cording to the abstraction principle for values we have that to check stability in a rowo
B it is enough to consider facts from the extended active domain adom∗.

Lemma 19 (Complexity Fresh Rowo DABPs). One can decide in NP time whether
there is an open execution in a fresh rowo DABP B that produces a ground atom A that
takes constants from adom∗.
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Proof. Since B is rowo, it is sufficient to guess one new instance at the start place, and
then check if the instance can traverse B and produce A. Thus, we guess an instance
o with an input record In(s̄) where constants from s̄ occur in adom∗. We update the
current configuration C to C′ accordingly. By this we obtain a singleton B′ = 〈P, C′〉.
Then to decide the initial problem it is enough to check if B′ can produceA under closed
semantics. From Lemma 17 it follows that this can be checked in nondeterministic
polynomial time in the size of B′. Since both guess and check were polynomial in the
size of B the claim follows from there.

Combining results from Lemmas 18 and 19 we show process complexity for arbitrary
rowo DABPs under open semantics.

Lemma 20 (Process Complexity Upper Bounds Open). Checking stability in rowo
DABPs under open semantics is in CO-NP in process complexity.

Proof. To decide stability in arbitrary rowo DABPs under open semantics one can
combine reasoning for arbitrary rowo DABPs under closed semantics and fresh rowo
DABPs under open semantics. In particular, one can extend the proof technique of
Lemma 18, by splitting the ground query atoms in the step (i) of Lemma 18 into three
parts: atoms produced by the existing instances; atoms produced by the fresh instances;
and atoms that are already in the initial database. Then to check if those three part are
indeed produced in that way, one can apply Lemma 18 for the first part and Lemma 19
for the second. Check for the third part can be done by simply looking into the database.
The rest of the proof remains the same as in Lemma 18.

Complexity Summary

Theorem 11 (Complexity Summary). For all variants of rowo DABPs under open and
closed semantics checking stability is

1. CO-NP-complete in process complexity;

2. ΠP
2-complete in query and combined complexity;

3. in AC0 in instance and data complexity.

6 Related Work and Conclusion

6.1 Related Work
Traditional approaches for business process modeling focus on the set of activities to
be performed and the flow of their execution. These approaches are known as activity-
centric. A different perspective, mainly investigated in the context of databases, consists
in identifying the set of data (entities) to be represented and describes processes in terms
of their possible evolutions. These approaches are known as data-centric.
Activity-Centric Approaches In the context of activity-centric processes, Petri Nets
(PNs) have been used for the representation, validation and verification of formal
properties, such as absence of deadlock, boundedness and reachability [21, 22]. In
PNs and their variants, a token carries a limited amount of information, which can be
represented by associating to the token a set of variables, like in colored PNs [15]. No
database is considered in PNs. From the control flow perspective, PNs model parallelism.
How to model parallelism is still an open question in data-centric BP models.
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Data-Centric Approaches Transducers [1, 20] were among the first formalisms
ascribing a central role to the data and how they are manipulated. These have been
extended to data driven web systems [9] to model the interaction of a user with a web
site, which are then extended in [8]. These frameworks express insertion and deletion
rules using FO formulas. The authors verify properties expressed as FO variants of
LTL, CTL and CTL* temporal formulas. The verification of these formulas results to
be undecidable in the general case. Decidability is obtained under certain restrictions
on the input, yielding to EXPSPACE complexity for checking LTL formulas and CO-
NEXPTIME and EXPSPACE for CTL and CTL* resp., in the propositional case.

Data-Centric Dynamic Systems (DCDSs) [3] describe processes in terms of guarded
FO rules that evolve the database. New data can be introduced via service calls yielding
an infinite state-system in the general case. The authors study the verification of temporal
properties expressed in variants of µ-calculus (that subsumes CTL*-FO). They identify
several undecidable classes and isolate decidable variants by assuming a bound on the
size of the database at each step or a bound on the number of constants at each run. In
these cases verification is EXPTIME-complete in data complexity.

Overall, both frameworks are more general than DABPs, since deletions and updates
of facts are also allowed. This is done by rebuilding the database after each execution
step. Further, our stability problem can be encoded as FO-CTL formula. However,
our decidability results for positive DABPs under open semantics are not captured
by the decidable fragments of those approaches. In addition, the authors of the work
above investigate the borders of decidability, while we focus on a simpler problem
and study the sources of complexity. Concerning the process representation, both
approaches adopt a rule-based specification. This makes the control flow more difficult
to grasp, in contrast to activity-centric approaches where the control flow has an explicit
representation.

Artifact-centric approaches [14] use artifacts to model business relevant entities. An
artifact is composed of a data part (information model) and a process part (life cycle) that
captures how the data part evolves. In [5,12,13] the authors investigate the verification of
properties of artifact-based processes such as reachability, temporal constraints, and the
existence of dead-end paths. In [12,13], there is an explicit representation of the process
part using Finite State Machines, and in [5] the process is represented by business rules,
thus leaving the control-flow implicit. However, none of these approaches explicitly
models an underlying database. Also, the authors focus on finding suitable restrictions
to achieve decidability, without a fine-grained complexity analysis as in our case.

Approaches in [2] and [4], investigate the challenge of combining processes and
data, however, focusing on the problem of data provenance and of querying the process
structure.

In [10,17] the authors study the problem of determining whether a query over views
is independent from a set of updates over the database. The authors do not consider
a database instance nor a process. Decidability results for rowo DABPs under open
semantics can be seen as a special case of those.

In summary, our approach to process modeling is closer to the activity-centric one
but we model manipulation of data like in the data-centric approaches. Also, having
process instances and DABPs facets gives finer granularity compared to data-centric
approaches.
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6.2 Discussion and Conclusion
Contributions Reasoning about data and processes can be relevant in decision sup-
port to understand how processes affect query answers. (1) To model processes that
manipulate data we adopt an explicit representation of the control flow as in standard BP
languages (e.g., BPMN). We specify how data is manipulated as annotations on top of
the control flow. (2) Our reasoning on stability can be offered as a reasoning service on
top of the query answering that reports on the reliability of an answer. Ideally, reasoning
on stability should not bring a significant overhead on query answering in practical
scenarios. Existing work on processes and data [3] shows that verification of general
temporal properties is typically intractable already measured in the size of the data. (3)
In order to identify tractable cases and sources of complexity we investigated different
variants of our problem, by considering negation in conditions, cyclic executions, read
access to written data, presence of pending process instances, and the possibility to start
fresh process instances. (4) Our aim is to deploy reasoning on stability to existing query
answering platforms such as SQL and Datalog. For this reason we established different
encodings into suitable variants of Datalog, that are needed to capture the different
characteristics of the problem. For each of them we showed that our encoding is optimal.
In contrast to existing approaches, which rely on model checking to verify properties, in
our work we rely on established database query languages.
Implementation Technologies Complexity results provide
boundaries on the technologies that can be used to implement the reasoning on stabil-
ity. In particular, when the problem requires an encoding into non-recursive Datalog
(PSPACE), which is equivalent to the relational algebra, we can in principle check
stability using an SQL engine. For the encoding into Datalog with stratified negation
(EXPTIME) we may still be able to use an SQL engine, however, we would need SQL
recursive rules to express recursion. Finally, if our problem requires unstratified negation
to be encoded (CO-NEXPTIME) we need ASP technology [16] to reason about it.
Discussion and Future Work Updates and deletions in DABPs can be modeled
using negation in the rules. Thus, one can show that for positive DABPs under open
semantics with updates or deletions, checking stability is undecidable. Similarly, for
positive cyclic DABPs under closed semantics, with updates or deletions the complexity
increases to CO-NEXPTIME. In addition, our results apply also in case the initial
database is not known, since an arbitrary database can be produced by a process under
open semantics starting from an empty database.

As future work, (i) we plan to investigate parallelism. Currently, we are able to deal
with it only in case instances do not interact (like in rowo). (ii) We plan to investigate
more expressive queries than CQ, such as CQ¬ (conjunctive queries with negation)
and FO queries (= SQL). Under open semantics we expect decidability for CQ¬ and
undecidability for FO queries. Also, we plan to consider: (iii) stability of aggregate
queries and aggregates in the process rules; (iv) quantified instability (in case a query
is not stable, compute the minimal and maximal number of possible new answers); (v)
other data quality aspects such as data timeliness and currency.
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